БИЛЕТ 1	

ШИФР __

заполняется ответственным секретарём

1. Решите уравнение

$$\frac{\left|\cos x\right| - \cos 3x}{\cos x \sin 2x} = \frac{2}{\sqrt{3}}.$$

2. Решите уравнение

$$\left(\frac{3x}{2}\right)^{\log_3(8x)} = \frac{x^7}{8}.$$

- **3.** Найдите количество натуральных чисел k, не превосходящих 291000 и таких, что k^2-1 делится нацело на 291.
- 4. Решите систему

$$\begin{cases} x^2 + y^2 \le 2, \\ 81x^4 - 18x^2y^2 + y^4 - 360x^2 - 40y^2 + 400 = 0. \end{cases}$$

- **5.** На ребре AA_1 правильной треугольной призмы $ABCA_1B_1C_1$ взята точка T такая, что $AT:A_1T=4:1$. Точка T является вершиной прямого кругового конуса такого, что три вершины призмы принадлежат окружности его основания.
 - а) Найдите отношение высоты призмы к ребру её основания.
 - б) Пусть дополнительно известно, что $BB_1 = 5$. Найдите объём конуса.
- **6.** Найдите все значения параметра b, для каждого из которых найдётся число a такое, что система

$$\begin{cases} x = |y - b| + \frac{3}{b}, \\ x^2 + y^2 + 32 = a(2y - a) + 12x \end{cases}$$

- 7. Четырехугольник ABCD вписан в окружность с центром O. Две окружности Ω_1 и Ω_2 равных радиусов с центрами O_1 и O_2 вписаны в углы BAD и BCD соответственно, при этом первая касается стороны AD в точке K, а вторая касается стороны BC в точке T.
 - а) Найдите радиус окружности Ω_1 , если AK = 2, CT = 8.
 - б) Пусть дополнительно известно, что точка ${\it O}_2$ является центром окружности, описанной около треугольника ${\it BOC}$. Найдите угол ${\it BDC}$.

БИЛЕТ	2
	_

ІШИФР

заполняется ответственным секретарём

1. Решите уравнение

$$\frac{\left|\sin x\right| - \sin 3x}{\cos x \cos 2x} = 2\sqrt{3} \ .$$

2. Решите уравнение

$$\left(\frac{x}{243}\right)^{\log_2\left(\frac{9x}{4}\right)} = \frac{729}{x^4}.$$

- **3.** Найдите количество натуральных чисел k, не превосходящих 445 000 и таких, что k^2-1 делится нацело на 445.
- 4. Решите систему

$$\begin{cases} x^2 + y^2 \le 1, \\ 16x^4 - 8x^2y^2 + y^4 - 40x^2 - 10y^2 + 25 = 0. \end{cases}$$

- **5.** На ребре BB_1 правильной треугольной призмы $ABCA_1B_1C_1$ взята точка T такая, что $BT:B_1T=2:5$. Точка T является вершиной прямого кругового конуса такого, что три вершины призмы принадлежат окружности его основания.
 - а) Найдите отношение высоты призмы к ребру её основания.
 - б) Пусть дополнительно известно, что $CC_1 = 7$. Найдите объём конуса.
- **6.** Найдите все значения параметра a, для каждого из которых найдётся число b такое, что система

$$\begin{cases} x = |y+a| + \frac{4}{a}, \\ x^2 + y^2 + 24 + b(2y+b) = 10x \end{cases}$$

- 7. Четырехугольник ABCD вписан в окружность с центром O. Две окружности Ω_1 и Ω_2 равных радиусов с центрами O_1 и O_2 вписаны в углы ABC и ADC соответственно, при этом первая касается стороны BC в точке K, а вторая касается стороны AD в точке T.
 - а) Найдите радиус окружности Ω_1 , если $BK = 3\sqrt{3}$, $DT = \sqrt{3}$.
 - б) Пусть дополнительно известно, что точка O_1 является центром окружности, описанной около треугольника BOC . Найдите угол BDC .

БИЛЕ	T 3

ШИФР

заполняется ответственным секретарём

1. Решите уравнение

$$\frac{\left|\cos x\right| + \cos 3x}{\sin x \cos 2x} = -2\sqrt{3} \ .$$

2. Решите уравнение

$$\left(\frac{x}{400}\right)^{\log_5\left(\frac{x}{8}\right)} = \frac{1024}{x^3}.$$

- **3.** Найдите количество натуральных чисел k, не превосходящих $485\,000$ таких, что k^2-1 делится нацело на 485.
- 4. Решите систему

$$\begin{cases} x^2 + y^2 \le 2, \\ x^4 - 8x^2y^2 + 16y^4 - 20x^2 - 80y^2 + 100 = 0. \end{cases}$$

- **5.** На ребре CC_1 правильной треугольной призмы $ABCA_1B_1C_1$ взята точка T такая, что $CT:C_1T=1:3$. Точка T является вершиной прямого кругового конуса такого, что три вершины призмы принадлежат окружности его основания.
 - а) Найдите отношение высоты призмы к ребру её основания.
 - б) Пусть дополнительно известно, что $\mathit{BB}_1 = 8$. Найдите объём конуса.
- **6.** Найдите все значения параметра b, для каждого из которых найдётся число a такое, что система

$$\begin{cases} x = \frac{7}{b} - |y+b|, \\ x^2 + y^2 + 96 = -a(2y+a) - 20x \end{cases}$$

- 7. Четырехугольник ABCD вписан в окружность с центром O. Две окружности Ω_1 и Ω_2 равных радиусов с центрами O_1 и O_2 вписаны в углы BAD и BCD соответственно, при этом первая касается стороны AB в точке L, а вторая касается стороны BC в точке F.
 - а) Найдите радиус окружности Ω_2 , если $AL=\sqrt{2}$, $CF=2\sqrt{2}$.
 - б) Пусть дополнительно известно, что точка ${\it O}_2$ является центром окружности, описанной около треугольника ${\it BOC}$. Найдите угол ${\it BDC}$.

		11	KJIAC

БИЛЕТ 4

ШИФР <u>заполняется ответственным секретарём</u>

1. Решите уравнение

$$\frac{\left|\sin x\right| + \sin 3x}{\cos x \cos 2x} = \frac{2}{\sqrt{3}} \ .$$

2. Решите уравнение

$$\left(\frac{x}{4}\right)^{\log_5(50x)} = x^6.$$

- **3.** Найдите количество натуральных чисел k, не превосходящих 267 000 и таких, что k^2-1 делится нацело на 267 .
- 4. Решите систему

$$\begin{cases} x^2 + y^2 \le 1, \\ x^4 - 18x^2y^2 + 81y^4 - 20x^2 - 180y^2 + 100 = 0. \end{cases}$$

- **5.** На ребре BB_1 правильной треугольной призмы $ABCA_1B_1C_1$ взята точка T такая, что $BT:B_1T=2:3$. Точка T является вершиной прямого кругового конуса такого, что три вершины призмы принадлежат окружности его основания.
 - а) Найдите отношение высоты призмы к ребру её основания.
 - б) Пусть дополнительно известно, что $CC_1 = 5$. Найдите объём конуса.
- **6.** Найдите все значения параметра a, для каждого из которых найдётся число b такое, что система

$$\begin{cases} x = \frac{6}{a} - |y - a|, \\ x^2 + y^2 + b^2 + 63 = 2(by - 8x) \end{cases}$$

- 7. Четырехугольник ABCD вписан в окружность с центром O. Две окружности Ω_1 и Ω_2 равных радиусов с центрами O_1 и O_2 вписаны в углы ABC и ADC соответственно, при этом первая касается стороны BC в точке F, а вторая касается стороны AD в точке P.
 - а) Найдите радиус окружности Ω_2 , если $\mathit{BF} = 3\sqrt{2}$, $\mathit{DP} = \sqrt{2}$.
 - б) Пусть дополнительно известно, что точка O_1 является центром окружности, описанной около треугольника BOC . Найдите угол BDC .

БИЛЕТ 5

ШИФР

заполняется ответственным секретарём

1. Решите неравенство

$$\frac{\log_3(x^4) \cdot \log_{\frac{1}{3}}(x^2) + \log_3(x^2) - \log_{\frac{1}{3}}(x^4) + 2}{\left(\log_{\frac{1}{3}}(x^2)\right)^3 + 64} \le 0.$$

2. Решите уравнение

$$\left(\frac{7}{2}\cos 2x + 2\right) \cdot \left|2\cos 2x - 1\right| = \cos x \left(\cos x + \cos 5x\right).$$

3. Решите систему уравнений

$$\begin{cases} \frac{1}{x} + \frac{1}{y+z} = -\frac{2}{15}, \\ \frac{1}{y} + \frac{1}{x+z} = -\frac{2}{3}, \\ \frac{1}{z} + \frac{1}{x+y} = -\frac{1}{4}. \end{cases}$$

- **4.** На стороне *BC* треугольника *ABC* взята точка *M* такая, что *BM* : MC = 2:5 . Биссектриса *BL* данного треугольника и отрезок *AM* пересекаются в точке *P* под углом 90° .
 - а) Найдите отношение площади треугольника АВР к площади четырёхугольника LPMC.
 - б) На отрезке MC отмечена точка F такая, что MF:FC=1:4. Пусть дополнительно известно, что прямые LF и BC перпендикулярны. Найдите угол CBL.
- **5.** Найдите количество пар целых чисел (x; y), удовлетворяющих условию $5x^2 6xy + y^2 = 6^{100}$.
- **6.** Найдите все значения параметра a , для каждого из которых найдётся число b такое, что система

$$\begin{cases} x^2 + y^2 + 2a(a + y - x) = 49, \\ y = 15\cos(x - b) - 8\sin(x - b) \end{cases}$$

- 7. В основании четырёхугольной призмы $ABCDA_1B_1C_1D_1$ лежит ромб ABCD, в котором AC=4 и $\angle DBC=30^\circ$. Сфера проходит через вершины D, A, B, B_1 , C_1 , D_1 .
 - а) Найдите площадь круга, полученного в сечении сферы плоскостью, проходящей через точки B , C и D .
 - б) Найдите угол A_1CD .
 - в) Пусть дополнительно известно, что радиус сферы равен 5. Найдите объём призмы.

БИЛЕТ 6

ШИФР

заполняется ответственным секретарём

1. Решите неравенство

$$\frac{125 + \left(\log_{\frac{1}{2}}(x^4)\right)^3}{\log_2(x^4) \cdot \log_2(x^2) + 6\log_{\frac{1}{2}}(x^4) + 17\log_2(x^2) - 3} \ge 0.$$

2. Решите уравнение

$$\left(\frac{7}{4} - 2\cos 2x\right) \cdot \left|2\cos 2x + 1\right| = \cos x \left(\cos x - \cos 5x\right).$$

3. Решите систему уравнений

$$\begin{cases} \frac{1}{x} + \frac{1}{y+z} = \frac{1}{12}, \\ \frac{1}{y} + \frac{1}{x+z} = \frac{1}{6}, \\ \frac{1}{z} + \frac{1}{x+y} = \frac{1}{2}. \end{cases}$$

- **4.** На стороне *BC* треугольника *ABC* взята точка *M* такая, что *BM* : MC = 2:7 . Биссектриса *BL* данного треугольника и отрезок *AM* пересекаются в точке *P* под углом 90° .
 - а) Найдите отношение площади треугольника АВР к площади четырёхугольника LPMC.
 - б) На отрезке MC отмечена точка T такая, что MT:TC=1:6. Пусть дополнительно известно, что прямые LT и BC перпендикулярны. Найдите угол CBL.
- **5.** Найдите количество пар целых чисел (x; y), удовлетворяющих условию $6x^2 7xy + y^2 = 10^{100}$.
- **6.** Найдите все значения параметра b , для каждого из которых найдётся число a такое, что система

$$\begin{cases} x^2 + y^2 + 2b(b - x + y) = 4, \\ y = 5\cos(x - a) - 12\sin(x - a) \end{cases}$$

- 7. В основании четырёхугольной призмы $ABCDA_1B_1C_1D_1$ лежит ромб ABCD, в котором CD=3 и $\angle ABD=30^\circ$. Сфера проходит через вершины D, C, B, B_1 , A_1 , D_1 .
 - а) Найдите площадь круга, полученного в сечении сферы плоскостью, проходящей через точки A , C и D .
 - б) Найдите угол C_1AB .
 - в) Пусть дополнительно известно, что радиус сферы равен 6. Найдите объём призмы.

БИЛЕТ 7

ШИФР

заполняется ответственным секретарём

1. Решите неравенство

$$\frac{\log_2\left(x^6\right) \cdot \log_{\frac{1}{2}}\left(x^2\right) - \log_{\frac{1}{2}}\left(x^6\right) - 8\log_2\left(x^2\right) + 2}{8 + \left(\log_{\frac{1}{2}}\left(x^2\right)\right)^3} \le 0.$$

2. Решите уравнение

$$\left(3\cos 2x + \frac{9}{4}\right) \cdot \left|1 - 2\cos 2x\right| = \sin x(\sin x - \sin 5x).$$

3. Решите систему уравнений

$$\begin{cases} \frac{1}{x} + \frac{1}{y+z} = 1, \\ \frac{1}{y} + \frac{1}{x+z} = \frac{4}{3}, \\ \frac{1}{z} + \frac{1}{x+y} = -\frac{4}{5}. \end{cases}$$

- **4.** На стороне *BC* треугольника *ABC* взята точка *M* такая, что *BM* : MC = 3:8 . Биссектриса *BL* данного треугольника и отрезок *AM* пересекаются в точке *P* под углом 90° .
 - а) Найдите отношение площади треугольника АВР к площади четырёхугольника LPMC.
 - б) На отрезке MC отмечена точка F такая, что MF:FC=1:7. Пусть дополнительно известно, что прямые LF и BC перпендикулярны. Найдите угол CBL.
- **5.** Найдите количество пар целых чисел (x; y), удовлетворяющих условию $x^2 + 6xy + 5y^2 = 10^{100}$.
- **6.** Найдите все значения параметра a , для каждого из которых найдётся число b такое, что система

$$\begin{cases} x^2 + y^2 + 2a(a - x - y) = 64, \\ y = 8\sin(x - 2b) - 6\cos(x - 2b) \end{cases}$$

- 7. В основании четырёхугольной призмы $ABCDA_1B_1C_1D_1$ лежит ромб ABCD, в котором BD=12 и $\angle BAC=60^\circ$. Сфера проходит через вершины D, A, B, B_1 , C_1 , D_1 .
 - а) Найдите площадь круга, полученного в сечении сферы плоскостью, проходящей через точки A_1 , B_1 и C_1 .
 - б) Найдите угол A_1CB .
 - в) Пусть дополнительно известно, что радиус сферы равен 8. Найдите объём призмы.

-		\sim
БИ.	ЛЕΤ	X

ШИФР

заполняется ответственным секретарём

1. Решите неравенство

$$\frac{64 + \left(\log_{\frac{1}{5}}(x^2)\right)^3}{\log_{\frac{1}{5}}(x^6) \cdot \log_5(x^2) + 5\log_5(x^6) + 14\log_{\frac{1}{5}}(x^2) + 2} \le 0.$$

2. Решите уравнение

$$\left(\frac{7}{4} - 3\cos 2x\right) \cdot \left|1 + 2\cos 2x\right| = \sin x \left(\sin x + \sin 5x\right).$$

3. Решите систему уравнений

$$\begin{cases} \frac{1}{x} + \frac{1}{y+z} = \frac{6}{5}, \\ \frac{1}{y} + \frac{1}{x+z} = \frac{3}{4}, \\ \frac{1}{z} + \frac{1}{x+y} = \frac{2}{3}. \end{cases}$$

- **4.** На стороне *BC* треугольника *ABC* взята точка *M* такая, что *BM* : MC = 3:7. Биссектриса *BL* данного треугольника и отрезок *AM* пересекаются в точке *P* под углом 90° .
 - а) Найдите отношение площади треугольника ABP к площади четырёхугольника LPMC .
 - б) На отрезке MC отмечена точка T такая, что MT:TC=1:6. Пусть дополнительно известно, что прямые LT и BC перпендикулярны. Найдите угол CBL.
- **5.** Найдите количество пар целых чисел (x; y), удовлетворяющих условию $x^2 + 7xy + 6y^2 = 15^{50}$.
- **6.** Найдите все значения параметра $\,b\,$, для каждого из которых найдётся число $\,a\,$ такое, что система

$$\begin{cases} x^2 + y^2 + 2b(b+x+y) = 81, \\ y = 4\cos(x+3a) - 3\sin(x+3a) \end{cases}$$

- 7. В основании четырёхугольной призмы $ABCDA_1B_1C_1D_1$ лежит ромб ABCD, в котором BD=3 и $\angle ADC=60^\circ$. Сфера проходит через вершины D, C, B, B_1 , A_1 , D_1 .
 - а) Найдите площадь круга, полученного в сечении сферы плоскостью, проходящей через точки A_1 , C_1 и D_1 .
 - б) Найдите угол B_1C_1A .
 - в) Пусть дополнительно известно, что радиус сферы равен 2. Найдите объём призмы.

БИЛЕТ 1	1	1
---------	---	---

заполняется ответственным секретарём

1. Решите уравнение

$$x^{\log_2(8x)} = \frac{x^7}{8} \,.$$

2. Решите уравнение

$$\frac{1}{2} \left| \cos 2x + \frac{1}{2} \right| = \sin^2 3x - \sin x \sin 3x.$$

- **3.** Найдите количество натуральных чисел k, не превосходящих 242400 и таких, что $k^2 + 2k$ делится нацело на 303.
- 4. Решите систему

$$\begin{cases} 3x \ge 2y + 16, \\ x^4 + 2x^2y^2 + y^4 + 25 - 26x^2 - 26y^2 = 72xy. \end{cases}$$

- 5. На ребре SA правильной четырёхугольной пирамиды SABCD с вершиной S отмечена точка Kтакая, что AK: KS = 2:3. Точка K является вершиной прямого кругового конуса, на окружности основания которого лежат три вершины пирамиды SABCD.
 - а) Найдите отношение CS: CD.
 - б) Пусть дополнительно известно, что высота пирамиды SABCD равна 5. Найдите объём конуса.
- **6.** Найдите все значения параметра b, для каждого из которых найдётся такое число a, что система

$$\begin{cases} y = -b - x^2, \\ x^2 + y^2 + 8a^2 = 4 + 4a(x + y) \end{cases}$$

- 7. В углы A и B треугольника ABC вписаны соответственно окружности с центрами O_1 и O_2 равного радиуса, точка O - центр окружности, вписанной в треугольник ABC. Данные окружности касаются стороны AB в точках K_1 , K_2 и K соответственно, при этом $AK_1 = 4$, $BK_2 = 6$, и AB = 16.
 - а) Найдите длину отрезка AK.
 - б) Пусть окружность с центром O_1 касается стороны AC в точке K_3 . Найдите угол CAB, если известно, что точка O_1 является центром окружности, описанной около треугольника OK_1K_3 .

БИЈ	IET	12

заполняется ответственным секретарём

1. Решите уравнение

$$x^{\log_3(27x^2)} = \frac{x^9}{81}$$
.

2. Решите уравнение

$$\frac{1}{2} \left| \cos 2x - \frac{1}{2} \right| = \cos^2 3x + \cos x \cos 3x.$$

- **3.** Найдите количество натуральных чисел k, не превосходящих 353500 и таких, что $k^2 + k$ делится нацело на 505.
- 4. Решите систему

$$\begin{cases} 2x \ge 14 + y, \\ x^4 + 2x^2y^2 + y^4 + 144 - 40x^2 - 40y^2 = 128xy. \end{cases}$$

- 5. На ребре SB правильной четырёхугольной пирамиды SABCD с вершиной S отмечена точка Lтакая, что BL:LS=2:5. Точка L является вершиной прямого кругового конуса, на окружности основания которого лежат три вершины пирамиды SABCD.
 - а) Найдите отношение AS:CD.
 - б) Пусть дополнительно известно, что высота пирамиды SABCD равна 7. Найдите объём конуса.
- **6.** Найдите все значения параметра a, для каждого из которых найдётся такое число b, что система

$$\begin{cases} y = x^2 - a, \\ x^2 + y^2 + 8b^2 = 4b(y - x) + 1 \end{cases}$$

- 7. В углы B и C треугольника ABC вписаны соответственно окружности с центрами O_1 и O_2 равного радиуса, точка O - центр окружности, вписанной в треугольник ABC. Данные окружности касаются стороны BC в точках K_1 , K_2 и K соответственно, при этом $BK_1 = 4$, $CK_2 = 8$, и BC = 18.
 - а) Найдите длину отрезка CK.
 - б) Пусть окружность с центром O_1 касается стороны AB в точке K_3 . Найдите угол ABC, если известно, что точка O_1 является центром окружности, описанной около треугольника OK_1K_3 .

БИЛ	ΠЕТ	13
$\boldsymbol{\nu}$	1111	10

заполняется ответственным секретарём

1. Решите уравнение

$$x^{\log_2(0,25x^3)} = 512x^4$$
.

2. Решите уравнение

$$\frac{1}{2}\left|\cos 2x + \frac{1}{2}\right| = \sin^2 x + \sin x \sin 5x.$$

- **3.** Найдите количество натуральных чисел k, не превосходящих 333300 и таких, что k^2-2k делится нацело на 303.
- 4. Решите систему

$$\begin{cases} 2x + y + 8 \le 0, \\ x^4 + 2x^2y^2 + y^4 + 9 - 10x^2 - 10y^2 = 8xy. \end{cases}$$

- 5. На ребре SA правильной четырёхугольной пирамиды SABCD с вершиной S отмечена точка Kтакая, что AK:KS=1:4. Точка K является вершиной прямого кругового конуса, на окружности основания которого лежат три вершины пирамиды SABCD.
 - а) Найдите отношение DS: BC.
 - б) Пусть дополнительно известно, что высота пирамиды SABCD равна 5. Найдите объём конуса.
- **6.** Найдите все значения параметра b, для каждого из которых найдётся такое число a, что система

$$\begin{cases} y = b - x^2, \\ x^2 + y^2 + 2a^2 = 4 - 2a(x + y) \end{cases}$$

- 7. В углы C и B треугольника ABC вписаны соответственно окружности с центрами O_1 и O_2 равного радиуса, точка O - центр окружности, вписанной в треугольник ABC . Данные окружности касаются стороны BC в точках K_1 , K_2 и K соответственно, при этом $CK_1 = 3$, $BK_2 = 7$, и BC = 16.
 - а) Найдите длину отрезка CK .
 - б) Пусть окружность с центром O_1 касается стороны AC в точке K_3 . Найдите угол ACB, если известно, что точка O_1 является центром окружности, описанной около треугольника OK_1K_3 .

БИЛЕТ	14
-------	----

заполняется ответственным секретарём

1. Решите уравнение

$$x^{\log_5(0,008x)} = \frac{125}{x^5} .$$

2. Решите уравнение

$$\frac{1}{2}\left|\cos 2x - \frac{1}{2}\right| = \cos^2 x + \cos x \cos 5x.$$

- **3.** Найдите количество натуральных чисел k, не превосходящих 454500 и таких, что k^2-k делится нацело на 505.
- 4. Решите систему

$$\begin{cases} x + 3y + 14 \le 0, \\ x^4 + 2x^2y^2 + y^4 + 64 - 20x^2 - 20y^2 = 8xy. \end{cases}$$

- 5. На ребре SC правильной четырёхугольной пирамиды SABCD с вершиной S отмечена точка Lтакая, что CL: LS = 1:5. Точка L является вершиной прямого кругового конуса, на окружности основания которого лежат три вершины пирамиды SABCD.
 - а) Найдите отношение AS: AB.
 - б) Пусть дополнительно известно, что высота пирамиды SABCD равна 6. Найдите объём конуса.
- **6.** Найдите все значения параметра a, для каждого из которых найдётся такое число b, что система

$$\begin{cases} y = x^2 + a, \\ x^2 + y^2 + 2b^2 = 2b(x - y) + 1 \end{cases}$$

- 7. В углы C и A треугольника ABC вписаны соответственно окружности с центрами O_1 и O_2 равного радиуса, точка O - центр окружности, вписанной в треугольник ABC. Данные окружности касаются стороны AC в точках K_1 , K_2 и K соответственно, при этом $CK_1 = 6$, $AK_2 = 8$, и AC = 21.
 - а) Найдите длину отрезка СК.
 - б) Пусть окружность с центром O_1 касается стороны BC в точке K_3 . Найдите угол BCA, если известно, что точка O_1 является центром окружности, описанной около треугольника OK_1K_3 .

1. Решите уравнение $\frac{|\cos x| - \cos 3x}{\cos x \sin 2x} = \frac{2}{\sqrt{3}}$

Otbet.
$$x = \frac{\pi}{6} + 2k\pi$$
, $x = \frac{5\pi}{6} + 2k\pi$, $x = \frac{4\pi}{3} + 2k\pi$, $k \in \mathbb{Z}$.

Решение. Возможны два случая.

- a) $\cos x \ge 0$. Тогда $\frac{\cos x \cos 3x}{\cos x \sin 2x} = \frac{2}{\sqrt{3}} \Leftrightarrow \frac{2\sin x \sin 2x}{\cos x \sin 2x} = \frac{2}{\sqrt{3}} \Leftrightarrow \operatorname{tg} x = \frac{1}{\sqrt{3}} \Leftrightarrow x = \frac{\pi}{6} + \pi k, k \in \mathbb{Z}$. Учитывая условие, получаем $x = \frac{\pi}{6} + 2k\pi, k \in \mathbb{Z}$.
- б) $\cos x < 0$. Тогда $\frac{-\cos x \cos 3x}{\cos x \sin 2x} = \frac{2}{\sqrt{3}} \Leftrightarrow \frac{-2\cos x \cos 2x}{\cos x \sin 2x} = \frac{2}{\sqrt{3}} \Leftrightarrow \operatorname{ctg} 2x = -\frac{1}{\sqrt{3}} \Leftrightarrow x = \frac{\pi}{3} + \frac{\pi k}{2}, k \in \mathbb{Z}$. Косинус отрицателен при $x = \frac{4\pi}{3} + 2k\pi, k \in \mathbb{Z}$ и при $x = \frac{5\pi}{6} + 2k\pi, k \in \mathbb{Z}$.
- **2.** Решите уравнение $\left(\frac{3x}{2}\right)^{\log_3(8x)} = \frac{x^7}{8}$.

Ответ.
$$x = \frac{729}{8}$$
, $x = 2$.

Решение. Логарифмируя по основанию 3, получаем уравнение, равносильное исходному:

$$\log_3(8x) \cdot \log_3\left(\frac{3x}{2}\right) = \log_3\left(\frac{x^7}{8}\right) \Leftrightarrow (\log_3 x + 3\log_3 2)(1 + \log_3 x - \log_3 2) = 7\log_3 x - 3\log_3 2.$$

Обозначим $\log_3 x = y$, $\log_3 2 = a$. После раскрытия скобок и приведения подобных слагаемых уравнение принимает вид $y^2 + (2a - 6)y - 3a^2 + 6a = 0$. Решаем квадратное уравнение относительно y:

$$\frac{D}{4} = (a-3)^2 + (3a^2 - 6a) = 4a^2 - 12a + 9 = (2a-3)^2, \ y = 3 - a \pm (2a-3) \Leftrightarrow \begin{bmatrix} y = a, \\ y = 6 - 3a. \end{bmatrix}$$

Находим x: если y = a, то $\log_3 x = \log_3 2$ и x = 2; если y = 6 - 3a, то $\log_3 x = 6 - 3\log_3 2$ и $x = \frac{729}{8}$.

3. Найдите количество натуральных чисел k, не превосходящих 291000 и таких, что k^2-1 делится нацело на 291. **Ответ**. 4000.

Решение. Разложив делимое и делитель на множители, получаем условие (k-1)(k+1): $(3\cdot 97)$. Значит, одно из чисел (k+1) или (k-1) делится на 97. Рассмотрим два случая.

- а) (k+1):97 , т.е. k=97p+96, $p\in Z$. Тогда получаем (97p+95)(97p+97): $(3\cdot 97)\Leftrightarrow (97p+95)(p+1)$:3 . Первый множитель делится на 3 при p=3q+1, $q\in Z$, а второй при p=3q+2, $q\in Z$, откуда получаем, что k=291q+193 , k=291q+290 , $q\in Z$.
- б) (k-1):97 , т.е. $k=97\,p+1,\,p\in Z$. Тогда получаем $97\,p(97\,p+2)$: $(3\cdot 97)\Leftrightarrow (97\,p+2)p$:3 . Первый множитель делится на 3 при $p=3q+1,\,q\in Z$, а второй при $p=3q,\,q\in Z$, откуда получаем, что k=291q+98 , k=291q+1 , $q\in Z$.

Итак, условию задачи удовлетворяют числа, дающие остатки 193, 290, 98, 1 при делении на 291, то есть подходят каждые 4 из 291 подряд идущих чисел. Так как $291000 = 291 \cdot 1000$, получаем $4 \cdot 1000 = 4000$ чисел.

4. Решите систему
$$\begin{cases} x^2 + y^2 \le 2, \\ 81x^4 - 18x^2y^2 + y^4 - 360x^2 - 40y^2 + 400 = 0. \end{cases}$$

Otbet.
$$\left(-\frac{3}{\sqrt{5}}; \frac{1}{\sqrt{5}}\right), \left(-\frac{3}{\sqrt{5}}; -\frac{1}{\sqrt{5}}\right), \left(\frac{3}{\sqrt{5}}; -\frac{1}{\sqrt{5}}\right), \left(\frac{3}{\sqrt{5}}; \frac{1}{\sqrt{5}}\right).$$

Решение. Преобразуем уравнение системы:

В каждом из четырёх случаев выражаем у и подставляем в неравенство.

Если
$$y = 3x + 2\sqrt{5}$$
, то $x^2 + \left(3x + 2\sqrt{5}\right)^2 \le 2$, $10x^2 + 12x\sqrt{5} + 18 \le 0$, $\left(x\sqrt{10} + 3\sqrt{2}\right)^2 \le 0$, $x = -\frac{3}{\sqrt{5}}$. Тогда $y = \frac{1}{\sqrt{5}}$.

Остальные случаи разбираются аналогично. В итоге получаем 4 решения: $\left(-\frac{3}{\sqrt{5}}; \frac{1}{\sqrt{5}}\right)$, $\left(-\frac{3}{\sqrt{5}}; -\frac{1}{\sqrt{5}}\right)$,

$$\left(\frac{3}{\sqrt{5}}; -\frac{1}{\sqrt{5}}\right), \left(\frac{3}{\sqrt{5}}; \frac{1}{\sqrt{5}}\right).$$

- **5.** На ребре AA_1 правильной треугольной призмы $ABCA_1B_1C_1$ взята точка T такая, что $AT:A_1T=4:1$. Точка T является вершиной прямого кругового конуса такого, что три вершины призмы принадлежат окружности его основания.
 - а) Найдите отношение высоты призмы к ребру её основания.
 - б) Пусть дополнительно известно, что $\mathit{BB}_1 = 5$. Найдите объём конуса.

Ответ. a)
$$\sqrt{\frac{5}{3}}$$
; б) $V = \frac{1280\pi}{29\sqrt{29}}$.

- **Решение.** Если три вершины призмы лежат на окружности основания конуса, то это означает, что три вершины призмы равноудалены от точки T, т.е. три из отрезков TA, TB, TC, TA_1 , TB_1 , TC_1 равны между собой. Заметим, что $TB_1 = TC_1 < TB = TC$; кроме того TB > TA, $TB_1 > TA_1$. Из этих неравенств следует, что отрезки TB и TC самые длинные, а отрезок TA_1 самый короткий. Значит, равны между собой отрезки TA, TB_1 и TC_1 .
- а) Обозначим $TA_1=x$, TA=4x. Тогда $TB_1=4x$. По теореме Пифагора для треугольника A_1B_1T находим, что $A_1B_1=x\sqrt{15}$. Значит, искомое отношение равно $\frac{5x}{x\sqrt{15}}=\sqrt{\frac{5}{3}}$.
- б) Из треугольника A_1B_1A по теореме Пифагора получаем, что $AB_1=2x\sqrt{10}$. Радиус основания конуса это радиус окружности, описанной около треугольника AB_1C_1 . Его стороны: $AB_1=AC_1=2x\sqrt{10}$, $B_1C_1=x\sqrt{15}$. Тогда находим его высоту: $AH=\frac{x\sqrt{145}}{2}$, площадь: $S=\frac{1}{2}\cdot x\sqrt{15}\cdot \frac{x\sqrt{145}}{2}=\frac{5x^2\sqrt{87}}{4}$, радиус описанной окружности: $R=\frac{2x\sqrt{10}\cdot 2x\sqrt{10}\cdot x\sqrt{15}}{4S}=\frac{8x\sqrt{5}}{\sqrt{29}}$.

Образующая конуса — это отрезок AT , т.е. она равна 4x . Тогда высота конуса $h = \sqrt{16x^2 - \frac{320x^2}{29}} = \frac{12x}{\sqrt{29}}$.

Находим объём конуса: $V = \frac{\pi}{3} \cdot \frac{320x^2}{29} \cdot \frac{12x}{\sqrt{29}} = \frac{1280\pi x^3}{29\sqrt{29}}$. Так как x = 1, окончательно получаем $V = \frac{1280\pi}{29\sqrt{29}}$.

6. Найдите все значения параметра b, для каждого из которых найдётся число a такое, что система

$$\begin{cases} x = |y - b| + \frac{3}{b}, \\ x^2 + y^2 + 32 = a(2y - a) + 12x \end{cases}$$

Othet.
$$b \in (-\infty \ 0) \cup \left[\frac{3}{8}; +\infty\right].$$

Решение. Второе уравнение системы может быть преобразовано к виду $(x-6)^2 + (y-a)^2 = 2^2$, следовательно, оно задаёт окружность радиуса 2 с центром (6; a). При всевозможных $a \in \mathbb{R}$ эти окружности заметают полосу $4 \le x \le 8$.

Первое уравнение задаёт "уголок" с ветвями, направленными вправо, с вершиной в точке $\left(\frac{3}{b};b\right)$.

- Для выполнения условия задачи необходимо и достаточно, чтобы "уголок", задаваемый первым уравнением, имел хотя бы одну общую точку с полосой $4 \le x \le 8$, а для этого нужно, чтобы абсцисса его вершины удовлетворяла неравенству $x_{\rm B} \le 8$, т.е. $\frac{3}{b} \le 8$ откуда $b \in (-\infty 0) \cup \left\lceil \frac{3}{8}; +\infty \right\rceil$.
- 7. Четырехугольник ABCD вписан в окружность с центром O. Две окружности Ω_1 и Ω_2 равных радиусов с центрами O_1 и O_2 вписаны в углы BAD и BCD соответственно, при этом первая касается стороны AD в точке K, а вторая касается стороны BC в точке T.
 - а) Найдите радиус окружности Ω_1 , если AK = 2, CT = 8.
 - б) Пусть дополнительно известно, что точка O_2 является центром окружности, описанной около треугольника BOC . Найдите угол BDC .

Ответ. a)
$$r = 4$$
, б) $\angle BDC = \arctan \frac{\sqrt{5} - 1}{2}$ или $\angle BDC = \pi - \arctan \frac{\sqrt{5} + 1}{2}$.

- **Решение.** а) Отрезки AO_1 и CO_2 являются биссектрисами углов BAD и BCD (центр окружности, вписанной в угол, лежит на биссектрисе этого угла). Так как четырёхугольник ABCD вписан в окружность, сумма его противоположных углов BAD и BCD равна 180° , поэтому сумма их половин углов KAO_1 и TCO_2 равна 90° . Пусть $\angle O_1AK = \alpha$. Тогда $\angle TO_2C = 90^\circ \angle TCO_2 = \alpha$. Выражая двумя способами $\operatorname{tg}\alpha$, получаем: $\operatorname{tg}\alpha = \frac{O_1K}{AK} = \frac{CT}{O_2T}, \ \frac{r}{2} = \frac{8}{r}, \ r = 4$.
- б) $O_2B = O_2C$ как радиусы окружности, описанной около треугольника BOC, поэтому высота этого треугольника O_2T также является его медианой. Точки O, O_2 и T лежат на одной прямой (на серединном перпендикуляре к отрезку BC). Далее находим: $O_2C = \sqrt{O_2T^2 + CT^2} = 4\sqrt{5}$, $O_2O = O_2C = 4\sqrt{5}$ (как радиусы одной окружности)

Возможны два случая: точки O_2 и O могут лежать либо по одну сторону от прямой BC, либо по разные стороны от неё.

В первом случае получаем:
$$\angle BDC = \frac{1}{2} \angle BOC = \angle COT = \operatorname{arctg} \frac{CT}{OT} = \operatorname{arctg} \frac{8}{4 + 4\sqrt{5}} = \operatorname{arctg} \frac{\sqrt{5} - 1}{2}$$
.

Bo втором случае:
$$\angle BDC = \pi - \frac{1}{2} \angle BOC = \pi - \angle COT = \pi - \operatorname{arctg} \frac{CT}{OT} = \pi - \operatorname{arctg} \frac{8}{4\sqrt{5} - 4} = \pi - \operatorname{arctg} \frac{\sqrt{5} + 1}{2}$$
.

1. Решите уравнение $\frac{|\sin x| - \sin 3x}{\cos x \cos 2x} = 2\sqrt{3}$.

Othet.
$$x = \pm \frac{2\pi}{3} + 2k\pi$$
, $x = -\frac{\pi}{6} + 2k\pi$, $k \in \mathbb{Z}$.

Решение. Возможны два случая

- a) $\sin x \ge 0$. Тогда $\frac{\sin x \sin 3x}{\cos x \cos 2x} = 2\sqrt{3} \Leftrightarrow \frac{-2\sin x \cos 2x}{\cos x \cos 2x} = 2\sqrt{3} \Leftrightarrow \operatorname{tg} x = -\sqrt{3} \Leftrightarrow x = -\frac{\pi}{3} + \pi k, k \in \mathbb{Z}$. Учитывая условие, получаем $x = \frac{2\pi}{3} + 2k\pi, k \in \mathbb{Z}$.
- б) $\sin x < 0$. Тогда $\frac{-\sin x \sin 3x}{\cos x \cos 2x} = 2\sqrt{3} \Leftrightarrow \frac{-2\cos x \sin 2x}{\cos x \cos 2x} = 2\sqrt{3} \Leftrightarrow \operatorname{tg} 2x = -\sqrt{3} \Leftrightarrow x = -\frac{\pi}{6} + \frac{\pi k}{2}, k \in \mathbb{Z}$. Синус отрицателен при $x = -\frac{2\pi}{3} + 2k\pi, k \in \mathbb{Z}$ и при $x = -\frac{\pi}{6} + 2k\pi, k \in \mathbb{Z}$.
- 2. Решите уравнение $\left(\frac{x}{243}\right)^{\log_2\left(\frac{9x}{4}\right)} = \frac{729}{x^4}$.

Ответ.
$$x = \frac{243}{4}$$
, $x = \frac{1}{9}$.

Решение. Логарифмируя по основанию 2, получаем уравнение, равносильное исходному:

$$\log_2\left(\frac{x}{243}\right) \cdot \log_2\left(\frac{9x}{4}\right) = \log_2\left(\frac{729}{x^4}\right) \Leftrightarrow \left(\log_2 x - 5\log_2 3\right) \left(-2 + \log_2 x + 2\log_2 3\right) = 6\log_2 3 - 4\log_2 x.$$

Обозначим $\log_2 x = y$, $\log_2 3 = a$. После раскрытия скобок и приведения подобных слагаемых уравнение принимает вид $y^2 - (3a - 2)y + 4a - 10a^2 = 0$. Решаем квадратное уравнение относительно y:

$$D = (3a - 2)^2 - 4(4a - 10a^2) = 49a^2 - 28a + 4 = (7a - 2)^2, \ \ y = \frac{3a - 2 \pm (7a - 2)}{2} \Leftrightarrow \begin{bmatrix} y = 5a - 2, \\ y = -2a. \end{bmatrix}$$

Находим x: если y = -2a, то $\log_2 x = -2\log_2 3$ и $x = \frac{1}{9}$; если y = 5a - 2, то $\log_2 x = 5\log_2 3 - 2$ и $x = \frac{243}{4}$.

3. Найдите количество натуральных чисел k, не превосходящих 445 000 и таких, что k^2-1 делится нацело на 445. **Ответ**. 4000.

Решение. Разложив делимое и делитель на множители, получаем условие (k-1)(k+1): $(5 \cdot 89)$. Значит, одно из чисел (k+1) или (k-1) делится на 89. Рассмотрим два случая.

- а) (k+1):89, т.е. k=89p+88, $p\in Z$. Тогда получаем (89p+87)(89p+89): $(5\cdot89)\Leftrightarrow (89p+87)(p+1)$:5. Первый множитель делится на 5 при p=5q+2, $q\in Z$, а второй при p=5q+4, $q\in Z$, откуда получаем, что k=445q+276, k=445q+444, $q\in Z$.
- б) (k-1):89, т.е. $k=89p+1, p\in \mathbb{Z}$. Тогда получаем 89p(89p+2): $(5\cdot89)\Leftrightarrow (89p+2)p$:5. Первый множитель делится на 5 при $p=5q+2, q\in \mathbb{Z}$, а второй при $p=5q, q\in \mathbb{Z}$, откуда получаем, что k=445q+179, $k=445q+1, q\in \mathbb{Z}$.

Итак, условию задачи удовлетворяют числа, дающие остатки 276,444,179,1 при делении на 445, то есть подходят каждые 4 из 445 подряд идущих чисел. Так как $445000 = 445 \cdot 1000$, получаем $4 \cdot 1000 = 4000$ чисел.

4. Решите систему
$$\begin{cases} x^2 + y^2 \le 1, \\ 16x^4 - 8x^2y^2 + y^4 - 40x^2 - 10y^2 + 25 = 0. \end{cases}$$

Otbet.
$$\left(-\frac{2}{\sqrt{5}}; \frac{1}{\sqrt{5}}\right), \left(-\frac{2}{\sqrt{5}}; -\frac{1}{\sqrt{5}}\right), \left(\frac{2}{\sqrt{5}}; -\frac{1}{\sqrt{5}}\right), \left(\frac{2}{\sqrt{5}}; \frac{1}{\sqrt{5}}\right).$$

Решение. Преобразуем уравнение системы:

$$16x^{4} - 8x^{2}y^{2} + y^{4} - 40x^{2} - 10y^{2} + 25 = 0 \Leftrightarrow 16x^{4} + 8x^{2}y^{2} + y^{4} - 40x^{2} - 10y^{2} + 25 = 16x^{2}y^{2} \Leftrightarrow (4x^{2} + y^{2})^{2} - 10(4x^{2} + y^{2}) + 25 = 16x^{2}y^{2} \Leftrightarrow (4x^{2} + y^{2} - 5)^{2} = (4xy)^{2} \Leftrightarrow (4x^{2} + y^{2} - 5) = 4xy, \Leftrightarrow \begin{bmatrix} (2x - y)^{2} = 5, \Leftrightarrow \begin{bmatrix} 2x - y = \pm\sqrt{5}, \\ 2x + y = \pm\sqrt{5}. \end{bmatrix}$$

В каждом из четырёх случаев выражаем у и подставляем в неравенство.

Если
$$y=2x+\sqrt{5}$$
 , то $x^2+\left(2x+\sqrt{5}\right)^2\leq 1$, $5x^2+4x\sqrt{5}+4\leq 0$, $\left(x\sqrt{5}+2\right)^2\leq 0$, $x=-\frac{2}{\sqrt{5}}$. Тогда $y=\frac{1}{\sqrt{5}}$.

Остальные случаи разбираются аналогично. В итоге получаем 4 решения: $\left(-\frac{2}{\sqrt{5}}; \frac{1}{\sqrt{5}}\right), \left(-\frac{2}{\sqrt{5}}; -\frac{1}{\sqrt{5}}\right)$,

$$\left(\frac{2}{\sqrt{5}}; -\frac{1}{\sqrt{5}}\right), \left(\frac{2}{\sqrt{5}}; \frac{1}{\sqrt{5}}\right).$$

- **5.** На ребре BB_1 правильной треугольной призмы $ABCA_1B_1C_1$ взята точка T такая, что $BT:B_1T=2:5$. Точка T является вершиной прямого кругового конуса такого, что три вершины призмы принадлежат окружности его основания.
 - а) Найдите отношение высоты призмы к ребру её основания.
 - б) Пусть дополнительно известно, что CC_1 = 7 . Найдите объём конуса.

Ответ. a)
$$\sqrt{\frac{7}{3}}$$
; б) $V = \frac{3500\pi}{37\sqrt{37}}$.

- **Решение.** Если три вершины призмы лежат на окружности основания конуса, то это означает, что три вершины призмы равноудалены от точки T, т.е. три из отрезков TA, TB, TC, TA_1 , TB_1 , TC_1 равны между собой. Заметим, что $TA_1 = TC_1 > TA = TC$; кроме того TA > TB, $TA_1 > TB_1$. Из этих неравенств следует, что отрезки TA_1 и TC_1 самые длинные, а отрезок TB_1 самый короткий. Значит, равны между собой отрезки TA_1 , TC_1 и TB_1 .
- а) Обозначим $TB_1 = 5x$, TB = 2x. Тогда TA = 5x. По теореме Пифагора для треугольника ABT находим, что $AB = x\sqrt{21}$. Значит, искомое отношение равно $\frac{7x}{x\sqrt{21}} = \sqrt{\frac{7}{3}}$.
- б) Из треугольника BB_1A по теореме Пифагора получаем, что $AB_1=x\sqrt{70}$. Радиус основания конуса это радиус окружности, описанной около треугольника AB_1C . Его стороны: $AB_1=CB_1=x\sqrt{70}$, $AC=x\sqrt{21}$. Тогда находим его высоту: $B_1H=\frac{x\sqrt{259}}{2}$, площадь: $S=\frac{1}{2}\cdot x\sqrt{21}\cdot \frac{x\sqrt{259}}{2}=\frac{7x^2\sqrt{111}}{4}$, радиус описанной окружности: $R=\frac{x\sqrt{70}\cdot x\sqrt{70}\cdot x\sqrt{21}}{4S}=\frac{10x\sqrt{7}}{\sqrt{37}}$.

Образующая конуса — это отрезок AT , т.е. она равна 5x . Тогда высота конуса $h = \sqrt{25x^2 - \frac{700x^2}{37}} = \frac{15x}{\sqrt{37}}$.

Находим объём конуса: $V = \frac{\pi}{3} \cdot \frac{700x^2}{37} \cdot \frac{15x}{\sqrt{37}} = \frac{3500\pi x^3}{37\sqrt{37}}$. Так как x = 1, окончательно получаем $V = \frac{3500\pi}{37\sqrt{37}}$.

6. Найдите все значения параметра a, для каждого из которых найдётся число b такое, что система

$$\begin{cases} x = |y + a| + \frac{4}{a}, \\ x^2 + y^2 + 24 + b(2y + b) = 10x \end{cases}$$

Ответ.
$$a \in (-\infty \ 0) \cup \left[\frac{2}{3}; +\infty\right].$$

Решение. Второе уравнение системы может быть преобразовано к виду $(x-5)^2 + (y+b)^2 = 1^2$, следовательно, оно задаёт окружность радиуса 1 с центром (5; -b). При всевозможных $b \in \mathbb{R}$ эти окружности заметают полосу $4 \le x \le 6$.

Первое уравнение задаёт "уголок" с ветвями, направленными вправо, с вершиной в точке $\left(\frac{4}{a}; -a\right)$.

- Для выполнения условия задачи необходимо и достаточно, чтобы "уголок", задаваемый первым уравнением, имел хотя бы одну общую точку с полосой $4 \le x \le 6$, а для этого нужно, чтобы абсцисса его вершины удовлетворяла неравенству $x_{\rm B} \le 6$, т.е $\frac{4}{a} \le 6$ откуда $a \in (-\infty 0) \cup \left[\frac{2}{3}; +\infty\right]$.
- 7. Четырехугольник ABCD вписан в окружность с центром O. Две окружности Ω_1 и Ω_2 равных радиусов с центрами O_1 и O_2 вписаны в углы ABC и ADC соответственно, при этом первая касается стороны BC в точке K, а вторая касается стороны AD в точке T.
 - а) Найдите радиус окружности Ω_1 , если $BK = 3\sqrt{3}$, $DT = \sqrt{3}$.
 - б) Пусть дополнительно известно, что точка O_1 является центром окружности, описанной около треугольника BOC . Найдите угол BDC .

Ответ. a) r = 3, б) $\angle BDC = 30^{\circ}$.

- **Решение.** а) Отрезки BO_1 и DO_2 являются биссектрисами углов ABC и ADC (центр окружности, вписанной в угол, лежит на биссектрисе этого угла). Так как четырёхугольник ABCD вписан в окружность, сумма его противоположных углов ABC и ADC равна 180° , поэтому сумма их половин углов KBO_1 и TDO_2 равна 90° . Пусть $\angle O_1BK = \alpha$. Тогда $\angle TO_2D = 90^\circ \angle TDO_2 = \alpha$. Выражая двумя способами $\operatorname{tg} \alpha$, получаем: $\operatorname{tg} \alpha = \frac{O_1K}{BK} = \frac{DT}{O_2T}$, $\frac{r}{3\sqrt{3}} = \frac{\sqrt{3}}{r}$, r = 3.
- б) $O_1B = O_1C$ как радиусы окружности, описанной около треугольника BOC, поэтому высота O_1K этого треугольника также является его медианой. Точки O, O_1 и K лежат на одной прямой (на серединном перпендикуляре к отрезку BC). Далее находим: $O_1B = \sqrt{O_1K^2 + KB^2} = 6$, $O_1O = O_1B = 6$ (как радиусы одной окружности).

Возможны два случая: точки O_1 и O могут лежать либо по одну сторону от прямой BC, либо по разные стороны от неё.

В первом случае получаем: $\angle BDC = \frac{1}{2} \angle BOC = \angle BOK = \arctan \frac{BK}{KO} = \arctan \frac{3\sqrt{3}}{9} = 30^{\circ}$.

Рассмотрим второй случай. Точка O_1 лежит на биссектрисе угла ABC, поэтому

$$\angle ABC = 2\angle O_1BK = 2 \operatorname{arctg} \frac{O_1K}{BK} = 2 \operatorname{arctg} \frac{1}{\sqrt{3}} = 60^{\circ}$$
.

Это означает, что вписанный угол ABC опирается на дугу AC, равную 120° . Вместе с тем дуга BC равна углу BOC, а $\angle BOC = 2\angle BOK = 2$ arctg $\frac{BK}{OK} = 2$ arctg $\frac{BK}{O_1O - r} = 2$ arctg $\sqrt{3} = 120^{\circ}$, что невозможно, так как в этом случае дуга AC должна быть меньше дуги BC.

1. Решите уравнение $\frac{|\cos x| + \cos 3x}{\sin x \cos 2x} = -2\sqrt{3}$.

Otbet.
$$x = \frac{2\pi}{3} + 2k\pi$$
, $x = \frac{7\pi}{6} + 2k\pi$, $x = -\frac{\pi}{6} + 2k\pi$, $k \in \mathbb{Z}$.

Решение. Возможны два случая.

- a) $\cos x \ge 0$. Тогда $\frac{\cos x + \cos 3x}{\sin x \cos 2x} = -2\sqrt{3} \Leftrightarrow \frac{2\cos x \cos 2x}{\sin x \cos 2x} = -2\sqrt{3} \Leftrightarrow \cot x = -\frac{\pi}{6} + \pi k, k \in \mathbb{Z}$. Учитывая условие, получаем $x = -\frac{\pi}{6} + 2k\pi, k \in \mathbb{Z}$.
- б) $\cos x < 0$. Тогда $\frac{-\cos x + \cos 3x}{\sin x \cos 2x} = 2\sqrt{3} \Leftrightarrow \frac{-2\sin x \sin 2x}{\sin x \cos 2x} = -2\sqrt{3} \Leftrightarrow \operatorname{tg} 2x = \sqrt{3} \Leftrightarrow x = \frac{\pi}{6} + \frac{\pi k}{2}, k \in \mathbb{Z}$. Косинус отрицателен при $x = \frac{2\pi}{3} + 2k\pi, k \in \mathbb{Z}$ и при $x = \frac{7\pi}{6} + 2k\pi, k \in \mathbb{Z}$.
- 2. Решите уравнение $\left(\frac{x}{400}\right)^{\log_5\left(\frac{x}{8}\right)} = \frac{1024}{x^3}$

Ответ.
$$x = \frac{8}{5}$$
, $x = 16$.

Решение. Логарифмируя по основанию 3, получаем уравнение, равносильное исходному:

$$\log_5\left(\frac{x}{400}\right) \cdot \log_5\left(\frac{x}{8}\right) = \log_5\left(\frac{1024}{x^3}\right) \Leftrightarrow \left(\log_5 x - 2 - 4\log_5 2\right) \left(\log_5 x - 3\log_5 2\right) = 10\log_5 2 - 3\log_5 x.$$

Обозначим $\log_5 x = y$, $\log_5 2 = a$. После раскрытия скобок и приведения подобных слагаемых уравнение принимает вид $y^2 - (7a - 1)y + 12a^2 - 4a = 0$. Решаем квадратное уравнение относительно y:

$$D = (7a - 1)^2 - 4(12a^2 - 4a) = a^2 + 2a + 1 = (a + 1)^2, \quad y = \frac{7a - 1 \pm (a + 1)}{2} \Leftrightarrow \begin{bmatrix} y = 4a, \\ y = 3a - 1. \end{bmatrix}$$

Находим x: если y = 4a, то $\log_5 x = 4\log_5 2$ и x = 16; если y = 3a - 1, то $\log_5 x = 3\log_5 2 - 1$ и $x = \frac{8}{5}$.

3. Найдите количество натуральных чисел k, не превосходящих $485\,000$ таких, что k^2-1 делится нацело на 485. **Ответ**. 4000.

Решение. Разложив делимое и делитель на множители, получаем условие (k-1)(k+1): $(5 \cdot 97)$. Значит, одно из чисел (k+1) или (k-1) делится на 97. Рассмотрим два случая.

- а) (k+1):97 , т.е. k=97p+96, $p\in Z$. Тогда получаем (97p+95)(97p+97): $(5\cdot 97)\Leftrightarrow (97p+95)(p+1)$:5 . Первый множитель делится на 5 при p=5q, $q\in Z$, а второй при p=5q+4, $q\in Z$, откуда получаем, что k=485q+96 , k=485q+484 , $q\in Z$.
- б) (k-1):97 , т.е. $k=97p+1, p\in Z$. Тогда получаем 97p(97p+2): $(5\cdot 97)\Leftrightarrow (97p+2)p$:5 . Первый множитель делится на 5 при $p=5q+4, q\in Z$, а второй при $p=5q, q\in Z$, откуда получаем, что k=485q+389 , $k=485q+1, q\in Z$.

Итак, условию задачи удовлетворяют числа, дающие остатки 96,484,389,1 при делении на 485, то есть подходят каждые 4 из 485 подряд идущих чисел. Так как $485\,000 = 485\cdot1000$, получаем $4\cdot1000 = 4000$ чисел.

4. Решите систему
$$\begin{cases} x^2 + y^2 \le 2, \\ x^4 - 8x^2y^2 + 16y^4 - 20x^2 - 80y^2 + 100 = 0. \end{cases}$$

Otbet.
$$\left(-\frac{\sqrt{2}}{\sqrt{5}}; \frac{2\sqrt{2}}{\sqrt{5}}\right), \left(\frac{\sqrt{2}}{\sqrt{5}}; \frac{2\sqrt{2}}{\sqrt{5}}\right), \left(\frac{\sqrt{2}}{\sqrt{5}}; -\frac{2\sqrt{2}}{\sqrt{5}}\right), \left(-\frac{\sqrt{2}}{\sqrt{5}}; -\frac{2\sqrt{2}}{\sqrt{5}}\right).$$

Решение. Преобразуем уравнение системы:

$$x^{4} - 8x^{2}y^{2} + 16y^{4} - 20x^{2} - 80y^{2} + 100 = 0 \Leftrightarrow x^{4} + 8x^{2}y^{2} + 16y^{4} - 20x^{2} - 80y^{2} + 100 = 16x^{2}y^{2} \Leftrightarrow (x^{2} + 4y^{2})^{2} - 20(x^{2} + 4y^{2}) + 100 = 16x^{2}y^{2} \Leftrightarrow (x^{2} + 4y^{2} - 10)^{2} = (4xy)^{2} \Leftrightarrow \left(x^{2} + 4y^{2} - 10 = 4xy, \Leftrightarrow \begin{bmatrix} (x - 2y)^{2} = 10, \Leftrightarrow \begin{bmatrix} x - 2y = \pm\sqrt{10}, \\ x^{2} + 4y^{2} - 10 = -4xy \end{bmatrix} \right)$$

В каждом из четырёх случаев выражаем х и подставляем в неравенство.

Если
$$x=2y+\sqrt{10}$$
 , то $y^2+\left(2y+\sqrt{10}\right)^2\leq 2$, $5y^2+4y\sqrt{10}+8\leq 0$, $\left(y\sqrt{5}+2\sqrt{2}\right)^2\leq 0$, $y=-\frac{2\sqrt{2}}{\sqrt{5}}$. Тогда $x=\frac{\sqrt{2}}{\sqrt{5}}$.

Остальные случаи разбираются аналогично. В итоге получаем 4 решения: $\left(-\frac{\sqrt{2}}{\sqrt{5}};\frac{2\sqrt{2}}{\sqrt{5}}\right)$, $\left(\frac{\sqrt{2}}{\sqrt{5}};\frac{2\sqrt{2}}{\sqrt{5}}\right)$,

$$\left(\frac{\sqrt{2}}{\sqrt{5}}; -\frac{2\sqrt{2}}{\sqrt{5}}\right), \left(-\frac{\sqrt{2}}{\sqrt{5}}; -\frac{2\sqrt{2}}{\sqrt{5}}\right).$$

- **5.** На ребре CC_1 правильной треугольной призмы $ABCA_1B_1C_1$ взята точка T такая, что $CT:C_1T=1:3$. Точка T является вершиной прямого кругового конуса такого, что три вершины призмы принадлежат окружности его основания.
 - а) Найдите отношение высоты призмы к ребру её основания.
 - б) Пусть дополнительно известно, что $BB_1 = 8$. Найдите объём конуса.

Ответ. a)
$$\sqrt{2}$$
; б) $V = \frac{576\pi\sqrt{3}}{11\sqrt{11}}$.

- **Решение.** Если три вершины призмы лежат на окружности основания конуса, то это означает, что три вершины призмы равноудалены от точки T, т.е. три из отрезков TA, TB, TC, TA_1 , TB_1 , TC_1 равны между собой. Заметим, что $TA_1 = TB_1 > TA = TB$; кроме того TA > TC, $TA_1 > TC_1$. Из этих неравенств следует, что отрезки TA_1 и TB_1 самые длинные, а отрезок TC самый короткий. Значит, равны между собой отрезки TA, TB и TC_1 .
- а) Обозначим $TC_1 = 3x$, TC = x. Тогда TA = 3x. По теореме Пифагора для треугольника ACT находим, что $AC = 2x\sqrt{2}$. Значит, искомое отношение равно $\frac{4x}{2x\sqrt{2}} = \sqrt{2}$.
- б) Из треугольника CC_1A по теореме Пифагора получаем, что $AC_1 = 2x\sqrt{6}$. Радиус основания конуса это радиус окружности, описанной около треугольника AC_1B . Его стороны: $AC_1 = BC_1 = 2x\sqrt{6}$, $AB = 2x\sqrt{2}$. Тогда находим его высоту: $C_1H = x\sqrt{22}$, площадь: $S = \frac{1}{2} \cdot 2x\sqrt{2} \cdot x\sqrt{22} = 2x^2\sqrt{11}$, радиус описанной окружности: $R = \frac{2x\sqrt{6} \cdot 2x\sqrt{6} \cdot 2x\sqrt{2}}{4S} = \frac{6x\sqrt{2}}{\sqrt{11}}$.

Образующая конуса — это отрезок AT , т.е. она равна 3x . Тогда высота конуса $h = \sqrt{9x^2 - \frac{72x^2}{11}} = \frac{3x\sqrt{3}}{\sqrt{11}}$

Находим объём конуса: $V = \frac{\pi}{3} \cdot \frac{72x^2}{11} \cdot \frac{3x\sqrt{3}}{\sqrt{11}} = \frac{72\pi x^3\sqrt{3}}{11\sqrt{11}}$. Так как x = 2, окончательно получаем $V = \frac{576\pi\sqrt{3}}{11\sqrt{11}}$.

6. Найдите все значения параметра b, для каждого из которых найдётся число a такое, что система

$$\begin{cases} x = \frac{7}{b} - |y + b|, \\ x^2 + y^2 + 96 = -a(2y + a) - 20x \end{cases}$$

Other.
$$b \in \left(-\infty; -\frac{7}{12}\right] \cup \left(0; +\infty\right).$$

Решение. Второе уравнение системы может быть преобразовано к виду $(x+10)^2 + (y+a)^2 = 2^2$, следовательно, оно задаёт окружность радиуса 2 с центром (-10; -a). При всевозможных $a \in \mathbb{R}$ эти окружности заметают полосу $-12 \le x \le -8$.

Первое уравнение задаёт "уголок" с ветвями, направленными влево, с вершиной в точке $\left(\frac{7}{b}; -b\right)$.

- Для выполнения условия задачи необходимо и достаточно, чтобы "уголок", задаваемый первым уравнением, имел хотя бы одну общую точку с полосой $-12 \le x \le -8$, а для этого нужно, чтобы абсцисса его вершины удовлетворяла неравенству $x_{\rm B} \ge -12$, т.е $\frac{7}{b} \ge -12$ откуда $b \in \left(-\infty; -\frac{7}{12}\right] \cup \left(0; +\infty\right)$.
- 7. Четырехугольник ABCD вписан в окружность с центром O. Две окружности Ω_1 и Ω_2 равных радиусов с центрами O_1 и O_2 вписаны в углы BAD и BCD соответственно, при этом первая касается стороны AB в точке L, а вторая касается стороны BC в точке F.
 - а) Найдите радиус окружности Ω_2 , если $AL=\sqrt{2}$, $CF=2\sqrt{2}$.
 - б) Пусть дополнительно известно, что точка O_2 является центром окружности, описанной около треугольника BOC . Найдите угол BDC .

Ответ. a)
$$r = 2$$
, б) $\angle BDC = \operatorname{arctg} \frac{\sqrt{3} - 1}{\sqrt{2}}$.

- **Решение.** а) Отрезки AO_1 и CO_2 являются биссектрисами углов BAD и BCD (центр окружности, вписанной в угол, лежит на биссектрисе этого угла). Так как четырёхугольник ABCD вписан в окружность, сумма его противоположных углов BAD и BCD равна 180° , поэтому сумма их половин углов LAO_1 и FCO_2 равна 90° . Пусть $\angle O_1AL = \alpha$. Тогда $\angle FO_2C = 90^\circ \angle FCO_2 = \alpha$. Выражая двумя способами $\operatorname{tg}\alpha$, получаем: $\operatorname{tg}\alpha = \frac{O_1L}{AL} = \frac{CF}{O_2F}, \frac{r}{\sqrt{2}} = \frac{2\sqrt{2}}{r}, r = 2$.
- б) $O_2B = O_2C$ как радиусы окружности, описанной около треугольника BOC, поэтому высота этого треугольника O_2F также является его медианой. Точки O, O_2 и F лежат на одной прямой (на серединном перпендикуляре к отрезку BC). Далее находим: $O_2C = \sqrt{O_2F^2 + CF^2} = 2\sqrt{3}$, $O_2O = O_2C = 2\sqrt{3}$ (как радиусы одной окружности).

Возможны два случая: точки O_2 и O могут лежать либо по одну сторону от прямой BC, либо по разные стороны от неё.

В первом случае получаем:
$$\angle BDC = \frac{1}{2} \angle BOC = \angle COF = \operatorname{arctg} \frac{CF}{OF} = \operatorname{arctg} \frac{2\sqrt{2}}{2+2\sqrt{3}} = \operatorname{arctg} \frac{\sqrt{3}-1}{\sqrt{2}}$$
.

Рассмотрим второй случай. Точка O_2 лежит на биссектрисе угла BCD, поэтому

$$\angle BCD = 2\angle O_2CF = 2 \arctan \frac{O_2F}{CF} = 2 \arctan \frac{1}{\sqrt{2}} = \arctan \left(2\sqrt{2}\right).$$

Это означает, что вписанный угол BCD опирается на дугу BD, равную $2\arctan\left(2\sqrt{2}\right)$. Вместе с тем дуга BC равна углу BOC, а $\angle BOC = 2\angle COF = 2\arctan\left(\frac{CF}{OF}\right) = 2\arctan\left(\frac{CF}{O_2O-r}\right) = 2\arctan\left(\frac{\sqrt{2}}{\sqrt{3}-1}\right) = 2\arctan\left(\frac{\sqrt{3}+1}{\sqrt{2}}\right)$, что невозможно, так как в этом случае дуга BD должна быть меньше дуги BC.

1. Решите уравнение $\frac{|\sin x| + \sin 3x}{\cos x \cos 2x} = \frac{2}{\sqrt{3}}$

Otbet.
$$x = \frac{\pi}{12} + 2k\pi$$
, $x = \frac{7\pi}{12} + 2k\pi$, $x = -\frac{5\pi}{6} + 2k\pi$, $k \in \mathbb{Z}$.

Решение. Возможны два случая.

- a) $\sin x \ge 0$. Тогда $\frac{\sin x + \sin 3x}{\cos x \cos 2x} = \frac{2}{\sqrt{3}} \Leftrightarrow \frac{2\cos x \sin 2x}{\cos x \cos 2x} = \frac{2}{\sqrt{3}} \Leftrightarrow \operatorname{tg} 2x = \frac{1}{\sqrt{3}} \Leftrightarrow x = \frac{\pi}{12} + \frac{\pi k}{2}, k \in \mathbb{Z}$. Учитывая условие, получаем $x = \frac{\pi}{12} + 2k\pi, k \in \mathbb{Z}$ и $x = \frac{7\pi}{12} + 2k\pi, k \in \mathbb{Z}$.
- б) $\sin x < 0$. Тогда $\frac{-\sin x + \sin 3x}{\cos x \cos 2x} = \frac{2}{\sqrt{3}} \Leftrightarrow \frac{2\cos 2x \sin x}{\cos x \cos 2x} = \frac{2}{\sqrt{3}} \Leftrightarrow \operatorname{tg} x = \frac{1}{\sqrt{3}} \Leftrightarrow x = \frac{\pi}{6} + k\pi, k \in \mathbb{Z}$. Синус отрицателен при $x = -\frac{5\pi}{6} + 2k\pi, k \in \mathbb{Z}$.
- **2.** Решите уравнение $\left(\frac{x}{4}\right)^{\log_5(50x)} = x^6$.

Ответ. $x = \frac{1}{2}$, x = 2500.

Решение. Логарифмируя по основанию 5, получаем уравнение, равносильное исходному:

$$\log_5(50x) \cdot \log_5\left(\frac{x}{4}\right) = \log_5\left(x^6\right) \Leftrightarrow (\log_5 x + 2 + \log_5 2)(\log_5 x - 2\log_5 2) = 6\log_5 x$$
.

Обозначим $\log_5 x = y$, $\log_5 2 = a$. После раскрытия скобок и приведения подобных слагаемых уравнение принимает вид $y^2 - (a+4)y - 2a^2 - 4a = 0$. Решаем квадратное уравнение относительно y:

$$D = (a+4)^2 + 4(2a^2 + 4a) = 9a^2 + 24a + 16 = (3a+4)^2, \ \ y = \frac{4+a\pm(3a+4)}{2} \Leftrightarrow \begin{bmatrix} y = 2a+4, \\ y = -a. \end{bmatrix}$$

Находим x: если y = -a, то $\log_5 x = -\log_5 2$ и $x = \frac{1}{2}$; если y = 2a + 4, то $\log_5 x = 2\log_5 2 + 4$ и x = 2500.

3. Найдите количество натуральных чисел k, не превосходящих 267 000 и таких, что k^2-1 делится нацело на 267 . **Ответ.** 4000 .

Решение. Разложив делимое и делитель на множители, получаем условие (k-1)(k+1): $(3 \cdot 89)$. Значит, одно из чисел (k+1) или (k-1) делится на 89. Рассмотрим два случая.

- а) (k+1):89 , т.е. k=89p+88, $p\in Z$. Тогда получаем (89p+87)(89p+89): $(3\cdot89)\Leftrightarrow (89p+87)(p+1)$:3 . Первый множитель делится на 3 при $p=3q, q\in Z$, а второй при $p=3q+2, q\in Z$, откуда получаем, что k=267q+88 , k=267q+266 , $q\in Z$.
- б) (k-1):89, т.е. $k=89p+1, p\in Z$. Тогда получаем 89p(89p+2): $(3\cdot89)\Leftrightarrow (89p+2)p$:3. Первый множитель делится на 3 при $p=3q+2, q\in Z$, а второй при $p=3q, q\in Z$, откуда получаем, что k=267q+179, k=267q+1, $q\in Z$.

Итак, условию задачи удовлетворяют числа, дающие остатки 88,266,179,1 при делении на 267, то есть подходят каждые 4 из 267 подряд идущих чисел. Так как $267\,000 = 267\cdot1000$, получаем $4\cdot1000 = 4000$ чисел.

4. Решите систему
$$\begin{cases} x^2 + y^2 \le 1, \\ x^4 - 18x^2y^2 + 81y^4 - 20x^2 - 180y^2 + 100 = 0. \end{cases}$$

Otbet.
$$\left(-\frac{1}{\sqrt{10}}; \frac{3}{\sqrt{10}}\right), \left(-\frac{1}{\sqrt{10}}; -\frac{3}{\sqrt{10}}\right), \left(\frac{1}{\sqrt{10}}; \frac{3}{\sqrt{10}}\right), \left(\frac{1}{\sqrt{10}}; -\frac{3}{\sqrt{10}}\right).$$

Решение. Преобразуем уравнение системы:

$$x^{4} - 18x^{2}y^{2} + 81y^{4} - 20x^{2} - 180y^{2} + 100 = 0 \Leftrightarrow x^{4} + 18x^{2}y^{2} + 81y^{4} - 20x^{2} - 180y^{2} + 100 = 36x^{2}y^{2} \Leftrightarrow (x^{2} + 9y^{2})^{2} - 20(x^{2} + 9y^{2}) + 100 = 36x^{2}y^{2} \Leftrightarrow (x^{2} + 9y^{2} - 10)^{2} = (6xy)^{2} \Leftrightarrow \left[x^{2} + 9y^{2} - 10 = 6xy, \atop x^{2} + 9y^{2} - 10 = -6xy\right] \Leftrightarrow \left[(x - 3y)^{2} = 10, \Leftrightarrow \begin{bmatrix}x - 3y = \pm\sqrt{10}, \atop x + 3y = \pm\sqrt{10}.\end{cases}$$

В каждом из четырёх случаев выражаем х и подставляем в неравенство.

Если
$$x = 3y + \sqrt{10}$$
, то $y^2 + \left(3y + \sqrt{10}\right)^2 \le 1$, $10y^2 + 6y\sqrt{10} + 9 \le 0$, $\left(y\sqrt{10} + 3\right)^2 \le 0$, $y = -\frac{3}{\sqrt{10}}$. Тогда $x = \frac{1}{\sqrt{10}}$.

Остальные случаи разбираются аналогично. В итоге получаем 4 решения: $\left(-\frac{1}{\sqrt{10}}; \frac{3}{\sqrt{10}}\right)$,

$$\left(-\frac{1}{\sqrt{10}}; -\frac{3}{\sqrt{10}}\right), \left(\frac{1}{\sqrt{10}}; \frac{3}{\sqrt{10}}\right), \left(\frac{1}{\sqrt{10}}; -\frac{3}{\sqrt{10}}\right).$$

- **5.** На ребре BB_1 правильной треугольной призмы $ABCA_1B_1C_1$ взята точка T такая, что $BT:B_1T=2:3$. Точка T является вершиной прямого кругового конуса такого, что три вершины призмы принадлежат окружности его основания.
 - а) Найдите отношение высоты призмы к ребру её основания.
 - б) Пусть дополнительно известно, что $CC_1 = 5$. Найдите объём конуса.

Ответ. a)
$$\sqrt{5}$$
; б) $V = \frac{180\pi\sqrt{3}}{23\sqrt{23}}$

- **Решение.** Если три вершины призмы лежат на окружности основания конуса, то это означает, что три вершины призмы равноудалены от точки T, т.е. три из отрезков TA, TB, TC, TA_1 , TB_1 , TC_1 равны между собой. Заметим, что $TA_1 = TC_1 > TA = TC$; кроме того TA > TB, $TA_1 > TB_1$. Из этих неравенств следует, что отрезки TA_1 и TC_1 самые длинные, а отрезок TB самый короткий. Значит, равны между собой отрезки TA, TC и TB_1 .
- а) Обозначим $TB_1 = 3x$, TB = 2x. Тогда TA = 3x. По теореме Пифагора для треугольника ABT находим, что $AB = x\sqrt{5}$. Значит, искомое отношение равно $\frac{5x}{x\sqrt{5}} = \sqrt{5}$.
- б) Из треугольника BB_1A по теореме Пифагора получаем, что $AB_1 = x\sqrt{30}$. Радиус основания конуса это радиус окружности, описанной около треугольника AB_1C . Его стороны: $AB_1 = CB_1 = x\sqrt{30}$, $AC = x\sqrt{5}$. Тогда находим его высоту: $B_1H = \frac{x\sqrt{115}}{2}$, площадь: $S = \frac{1}{2} \cdot x\sqrt{5} \cdot \frac{x\sqrt{115}}{2} = \frac{5x^2\sqrt{23}}{4}$, радиус описанной окружности: $R = \frac{x\sqrt{30} \cdot x\sqrt{30} \cdot x\sqrt{5}}{4S} = \frac{6x\sqrt{5}}{\sqrt{23}}$.

Образующая конуса — это отрезок AT , т.е. она равна 3x . Тогда высота конуса $h = \sqrt{9x^2 - \frac{180x^2}{23}} = \frac{3x\sqrt{3}}{\sqrt{23}}$.

Находим объём конуса: $V = \frac{\pi}{3} \cdot \frac{180x^2}{23} \cdot \frac{3x\sqrt{3}}{\sqrt{23}} = \frac{180\pi x^3\sqrt{3}}{23\sqrt{23}}$. Так как x = 1, окончательно получаем $V = \frac{180\pi\sqrt{3}}{23\sqrt{23}}$.

6. Найдите все значения параметра a, для каждого из которых найдётся число b такое, что система

$$\begin{cases} x = \frac{6}{a} - |y - a|, \\ x^2 + y^2 + b^2 + 63 = 2(by - 8x) \end{cases}$$

Other.
$$a \in \left(-\infty; -\frac{2}{3}\right] \cup \left(0+\infty\right)$$
.

Решение. Второе уравнение системы может быть преобразовано к виду $(x+8)^2 + (y-b)^2 = 1^2$, следовательно, оно задаёт окружность радиуса 1 с центром (-8;b). При всевозможных $b \in \mathbb{R}$ эти окружности заметают полосу $-9 \le x \le -7$.

Первое уравнение задаёт "уголок" с ветвями, направленными влево, с вершиной в точке $\left(\frac{6}{a};a\right)$.

- Для выполнения условия задачи необходимо и достаточно, чтобы "уголок", задаваемый первым уравнением, имел хотя бы одну общую точку с полосой $-9 \le x \le -7$, а для этого нужно, чтобы абсцисса его вершины удовлетворяла неравенству $x_{\rm B} \ge -9$, т.е $\frac{6}{a} \ge -9$ откуда $a \in \left(-\infty; -\frac{2}{3}\right] \cup \left(0+\infty\right)$.
- 7. Четырехугольник ABCD вписан в окружность с центром O. Две окружности Ω_1 и Ω_2 равных радиусов с центрами O_1 и O_2 вписаны в углы ABC и ADC соответственно, при этом первая касается стороны BC в точке F, а вторая касается стороны AD в точке P.
 - а) Найдите радиус окружности Ω_2 , если $BF = 3\sqrt{2}$, $DP = \sqrt{2}$.
 - б) Пусть дополнительно известно, что точка O_1 является центром окружности, описанной около треугольника BOC . Найдите угол BDC .

Ответ. a) $r = \sqrt{6}$, б) $\angle BDC = 30^{\circ}$.

- **Решение.** а) Отрезки BO_1 и DO_2 являются биссектрисами углов ABC и ADC (центр окружности, вписанной в угол, лежит на биссектрисе этого угла). Так как четырёхугольник ABCD вписан в окружность, сумма его противоположных углов ABC и ADC равна 180° , поэтому сумма их половин углов FBO_1 и PDO_2 равна 90° . Пусть $\angle O_1BF = \alpha$. Тогда $\angle PO_2D = 90^\circ \angle PDO_2 = \alpha$. Выражая двумя способами $\operatorname{tg}\alpha$, получаем: $\operatorname{tg}\alpha = \frac{O_1F}{BF} = \frac{DP}{O_2P}, \ \frac{r}{3\sqrt{2}} = \frac{\sqrt{2}}{r}, \ r = \sqrt{6} \ .$
- б) $O_1B = O_1C$ как радиусы окружности, описанной около треугольника BOC, поэтому высота O_1F этого треугольника также является его медианой. Точки O, O_1 и F лежат на одной прямой (на серединном перпендикуляре к отрезку BC). Далее находим: $O_1B = \sqrt{O_1F^2 + FB^2} = 2\sqrt{6}$, $O_1O = O_1B = 2\sqrt{6}$ (как радиусы одной окружности).

Возможны два случая: точки O_1 и O могут лежать либо по одну сторону от прямой BC, либо по разные стороны от неё.

В первом случае получаем: $\angle BDC = \frac{1}{2} \angle BOC = \angle BOF = \operatorname{arctg} \frac{BF}{FO} = \operatorname{arctg} \frac{3\sqrt{2}}{3\sqrt{6}} = 30^{\circ}$.

Рассмотрим второй случай. Точка O_1 лежит на биссектрисе угла ABC, поэтому

$$\angle ABC = 2\angle O_1BF = 2 \arctan \frac{O_1F}{BF} = 2 \arctan \frac{1}{\sqrt{3}} = 60^{\circ}$$
.

Это означает, что вписанный угол ABC опирается на дугу AC, равную 120° . Вместе с тем дуга BC равна углу BOC, а $\angle BOC = 2\angle BOF = 2$ arctg $\frac{BF}{OF} = 2$ arctg $\frac{BF}{O_1O-r} = 2$ arctg $\sqrt{3} = 120^{\circ}$, что невозможно, так как в этом случае дуга AC должна быть меньше дуги BC.

11 класс, билеты 1-4

Задача считается полностью решённой (и за неё начисляется максимально возможное количество баллов), только если в тексте решения приведены все необходимые преобразования и полностью объяснены все имеющиеся логические шаги, при этом полученные ответы приведены к упрощённому виду. Наличие верного ответа не гарантирует выставление положительного балла за задачу.

разобраны оба случая раскрытия модуля	1.(5) Разобран только один из двух случаев раскрытия модуля	+2 балла;
— не сделан (неверно сделан) отбор корней. —— 16алл за каждый случай. —— 2. (7) Уравнение приведено к квадратному относительно логарифма по постоянному основанию. —— $+3$ балла; получен ответ в неупрощённом виде. —— $+4$ балла; получен ответ в упрощённом виде. —— $+4$ балла; уравнение приведено к виду $f(x)^{g(x)} = f(x)^{h(x)}$ или $f(x)^{h(x)} = g(x)^{h(x)}$ —— $+4$ балла; уравнение приведено к виду $f(x)^{g(x)} = f(x)^{h(x)}$ или $f(x)^{h(x)} = g(x)^{h(x)}$ —— $+3$ балла; —— если при таком способе решения рассмотрен только один из двух случаев $f(x)=1$, $g(x)=h(x)$ или $f(x)=g(x)$ $h(x)=0$ —— $+1$ балла 3. (6) Задача сведена к исследованию четырёх случаев. —— $+1$ балла верно рассмотрены ровно один случай —— $+1$ балла; верно рассмотрены ровно один случай —— $+1$ балла; верно рассмотрены ровно три случая —— $+1$ балла; $+1$ балла; $+1$ балла; $+1$ балла $+1$ балл		
получен ответ в неупрошённом виде		
получен ответ в неупрошённом виде	2 (7) Упавиение привелено к крадратному относительно догарифма по постоянному основанию	+3 баппа.
получен ответ в упрощённом виде		
уравнение приведено к виду $f(x)^{g(x)} = f(x)^{h(x)}$ или $f(x)^{h(x)} = g(x)^{h(x)}$		
— если при таком способе решения рассмотрен только один из двух случаев $f(x)=1$, $g(x)=h(x)$ или $f(x)=g(x)$, $h(x)=0$	уравнение приведено к виду $f(x)^{g(x)} = f(x)^{h(x)}$ или $f(x)^{h(x)} = g(x)^{h(x)}$	+3 балла;
h(x) = 0 +1 балл 3.(6) Задача сведена к исследованию четырёх случаев +1 балл; верно рассмотрен ровно один случай +1 балл; верно рассмотрены ровно один случая +2 балла; верно рассмотрены ровно три случая +3 балла; верно рассмотрены все четыре случая +5 баллов; случай обращения в ноль делимого не учтён при подсчёте. баллы не снимаются. 4.(8) Уравнение системы разложено на 4 линейных множителя +4 балла; найдено решение (для каждого из четырёх случаев) +1 балл; - если далее при поиске решений неравенство заменяется уравнением, то добавляется не более 1 балла за васе случаи. 2 балла за васе случаи. уравнение системы разложено на два квадратичных множителя и других продвижений нет. 2 балла за задачу. 5.(9) Обосновано, какие вершины призмы лежат на окружности основания конуса. +2 балла; найдено отношение высоты призмы к ребру её основания +3 балла; найдено отношение высоты призмы к ребру её основания +3 балла; найден объём конуса +2 балла; 10 Построено множество точек, удовлетворяющих второму уравнению системы при фиксированном значении +3 балла; 10 Построено множество точек, удовлетворяющих второму уравнению системы при фиксированном значении +1 балл; 10 Построено множ	– если при таком способе решения рассмотрен только один из двух случаев $f(x)=1$, $g(x)=h(x)$ или	f(x) = g(x),
верно рассмотрен ровно один случай		
верно рассмотрен ровно один случай	2 (() 20-00-00-00-00-00-00-00-00-00-00-00-00-0	1160
верно рассмотрены ровно два случая		
верно рассмотрены ровно три случая		
верно рассмотрены все четыре случая		
случай обращения в ноль делимого не учтён при подсчёте		
4.(8) Уравнение системы разложено на 4 линейных множителя +4 балла; найдено решение (для каждого из четырёх случаев) +1 балл; – если далее при поиске решений неравенство заменяется уравнением, то добавляется не более 1 балла за все случаи. уравнение системы разложено на два квадратичных множителя и других продвижений нет. 2 балла за задачу; неравенство системы заменено уравнением и при этом второе уравнение не разложено на множители. не более 1 балла за задачу. 5.(9) Обосновано, какие вершины призмы лежат на окружности основания конуса. +2 балла; найден объём конуса +3 балла; 6.(7) Построено множество точек, удовлетворяющих второму уравнению системы при фиксированном значении параметра (окружность). +1 балл; построена полоса между двумя параллельными прямыми, представляющая собой объединение окружностей, задаваемых вторым уравнением при всевозможных действительных значениях параметра. +1 балл; задача обоснованно сведена к следующей: "график функции, задаваемой первым уравнением, имеет хотя бы одну общую точку с этой полосой". +3 балла.		
найдено решение (для каждого из четырёх случаев)	The second secon	
найдено решение (для каждого из четырёх случаев)	4.(8) Уравнение системы разложено на 4 линейных множителя	+4 балла;
уравнение системы разложено на два квадратичных множителя и других продвижений нет	найдено решение (для каждого из четырёх случаев)	+1 балл;
неравенство системы заменено уравнением и при этом второе уравнение не разложено на множители		
множители		
5.(9) Обосновано, какие вершины призмы лежат на окружности основания конуса +2 балла; найдено отношение высоты призмы к ребру её основания +3 балла; найден объём конуса +4 балла. 6.(7) Построено множество точек, удовлетворяющих второму уравнению системы при фиксированном значении параметра (окружность) +1 балл; построена полоса между двумя параллельными прямыми, представляющая собой объединение окружностей, 3адаваемых вторым уравнением при всевозможных действительных значениях параметра +1 балл; задача обоснованно сведена к следующей: "график функции, задаваемой первым уравнением, имеет хотя бы одну общую точку с этой полосой" +3 балла.		
найдено отношение высоты призмы к ребру её основания	множители не более 1 балла	а за задачу.
найден объём конуса	5.(9) Обосновано, какие вершины призмы лежат на окружности основания конуса	+2 балла;
6.(7) Построено множество точек, удовлетворяющих второму уравнению системы при фиксированном значении параметра (окружность)		
параметра (окружность)	найден объём конуса	+ 4 балла.
параметра (окружность)	6.(7) Построено множество точек, удовлетворяющих второму уравнению системы при фиксированно	ом значении
задаваемых вторым уравнением при всевозможных действительных значениях параметра	параметра (окружность)	+1 балл;
задача обоснованно сведена к следующей: "график функции, задаваемой первым уравнением, имеет хотя бы одну общую точку с этой полосой"+3 балла.	построена полоса между двумя параллельными прямыми, представляющая собой объединение оп	кружностей,
общую точку с этой полосой"+3 балла.	задаваемых вторым уравнением при всевозможных действительных значениях параметра	+1 балл;
7 (8) Daylön Hyurcz a)	общую точку с этой полосой"	+3 балла.
	7.(8) Решён пункт а)	
решён пункт б) (рассмотрен любой из двух возможных случаев)	решён пункт б) (рассмотрен любой из двух возможных случаев)	+5 баллов.

Итого – 50 баллов.

$$\textbf{1. Решите неравенство} \ \frac{\log_3\left(x^4\right) \cdot \log_{\frac{1}{3}}\left(x^2\right) + \log_3\left(x^2\right) - \log_{\frac{1}{3}}\left(x^4\right) + 2}{\left(\log_{\frac{1}{3}}\left(x^2\right)\right)^3 + 64} \leq 0 \ .$$

Ответ.
$$x \in (-9, -3] \cup \left[-\frac{1}{\sqrt[4]{3}}, 0 \right] \cup \left[0, \frac{1}{\sqrt[4]{3}} \right] \cup \left[3, 9 \right).$$

Решение. Данное неравенство равносильно следующему:

$$\frac{2\log_3 x^2 \cdot \left(-\log_3 x^2\right) + \log_3 x^2 + 2\log_3 x^2 + 2}{64 - \log_3^3 x^2} \le 0.$$

После замены
$$\log_3 x^2 = t$$
 неравенство принимает вид $\frac{-2t^2 + 3t + 2}{64 - t^3} \le 0$, откуда $\frac{(2 - t)(1 + 2t)}{4 - t} \le 0$, $t \in \left(-\infty; -\frac{1}{2}\right] \cup [2; 4)$.

Находим значения х

При
$$t \le -\frac{1}{2}$$
 получаем $0 < x^2 \le \frac{1}{\sqrt{3}} \Leftrightarrow x \in \left[-\frac{1}{\sqrt[4]{3}}; 0 \right] \cup \left[0; \frac{1}{\sqrt[4]{3}} \right].$

При $2 \le t < 4$ получаем $9 \le x^2 < 81 \Leftrightarrow x \in (-9; -3] \cup [3; 9)$.

2. Решите уравнение
$$\left(\frac{7}{2}\cos 2x + 2\right) \cdot \left|2\cos 2x - 1\right| = \cos x \left(\cos x + \cos 5x\right)$$
.

Ответ.
$$x = \pm \frac{\pi}{6} + \frac{k\pi}{2}, k \in \mathbb{Z}$$
.

Решение. Преобразуем правую часть уравнения:

$$\cos x(\cos x + \cos 5x) = \cos x \cdot 2\cos 3x\cos 2x = \cos 2x \cdot (2\cos x\cos 3x) = \cos 2x \cdot (\cos 2x + \cos 4x) =$$

$$= \cos 2x (2\cos^2 2x + \cos 2x - 1) = \cos 2x (2\cos 2x - 1)(\cos 2x + 1).$$

Обозначим $\cos 2x = t$. Тогда уравнение принимает вид $\left(\frac{7}{2}t + 2\right) \cdot \left|2t - 1\right| = t\left(2t - 1\right)(t + 1)$. Возможны три случая.

а)
$$t = \frac{1}{2}$$
 является корнем уравнения.

б)
$$t > \frac{1}{2}$$
. Получаем $\frac{7}{2}t + 2 = t^2 + t$, $t^2 - \frac{5}{2}t - 2 = 0$, $t = \frac{5 \pm \sqrt{57}}{4}$. Корень $t_1 = \frac{5 + \sqrt{57}}{4}$ не подходит, так как $t_1 > 1$; корень $t_2 = \frac{5 - \sqrt{57}}{4}$ не подходит, так как не удовлетворяет условию $t > \frac{1}{2}$.

в)
$$t < \frac{1}{2}$$
 . Получаем $\frac{7}{2}t + 2 = -t^2 - t$, $t^2 + \frac{9}{2}t + 2 = 0$, $t = 4$ или $t = -\frac{1}{2}$. Подходит $t = -\frac{1}{2}$.

Итого:
$$t = \pm \frac{1}{2}$$
, $\cos 2x = \pm \frac{1}{2}$, $2x = \pm \frac{\pi}{3} + k\pi$, $x = \pm \frac{\pi}{6} + \frac{k\pi}{2}$, $k \in \mathbb{Z}$.

3. Решите систему уравнений
$$\begin{cases} \frac{1}{x} + \frac{1}{y+z} = -\frac{2}{15}, \\ \frac{1}{y} + \frac{1}{x+z} = -\frac{2}{3}, \\ \frac{1}{z} + \frac{1}{x+y} = -\frac{1}{4}. \end{cases}$$

Ответ. (5; -1; -2).

Решение. Домножая обе части первого уравнения на
$$-\frac{15}{2}x(y+z)$$
, обе части второго – на $-\frac{3}{2}y(x+z)$, третьего – на $-4z(x+y)$, получаем систему

$$\begin{cases} -7.5(x+y+z) = xy + xz, \\ -1.5(x+y+z) = xy + yz, \\ -4(x+y+z) = xz + yz. \end{cases}$$

Сложив почленно все три уравнения и разделив полученное равенство пополам, получаем равенство xy + xz + yz = -6.5(x + y + z).

Вычитая из него каждое из уравнений последней системы, находим, что

$$\begin{cases} -2.5(x+y+z) = xy, \\ (x+y+z) = yz, \\ -5(x+y+z) = xz. \end{cases}$$

Разделив первое уравнение на второе (это возможно, так как из ОДЗ исходной системы следует, что $xyz \neq 0$), получаем, что x = -2.5z, а разделив первое на третье – что y = 0.5z.

Тогда второе уравнение принимает вид $-z = 0.5z^2$, откуда z = -2, x = 5, y = -1.

- **4.** На стороне BC треугольника ABC взята точка M такая, что BM:MC=2:5. Биссектриса BL данного треугольника и отрезок AM пересекаются в точке P под углом 90° .
 - а) Найдите отношение площади треугольника АВР к площади четырёхугольника LPMC.
 - б) На отрезке MC отмечена точка F такая, что MF: FC = 1:4. Пусть дополнительно известно, что прямые LF и BC перпендикулярны. Найдите угол CBL.

Ответ. a) 9:40, б)
$$\arccos \frac{3\sqrt{3}}{2\sqrt{7}}$$
.

Решение. а) В треугольнике ABM отрезок BP является биссектрисой и высотой, поэтому треугольник ABM равнобедренный, а BP является также его медианой. Обозначим BM = 2x, тогда AB = 2x, MC = 5x. По свойству биссектрисы треугольника, AL: LC = AB: BC = 2x: 7x = 2: 7.

Обозначим площадь треугольника ABC через S . Тогда $S_{ABP} = \frac{1}{2}S_{ABM} = \frac{1}{2}\cdot\frac{2}{7}S_{ABC} = \frac{1}{7}S$. По теореме об

отношении площадей треугольников получаем $\frac{S_{APL}}{S_{AMC}} = \frac{AP}{AM} \cdot \frac{AL}{AC} = \frac{1}{2} \cdot \frac{2}{9} = \frac{1}{9}$, следовательно,

$$S_{APL} = \frac{1}{9}S_{AMC} = \frac{1}{9}\cdot\frac{5}{7}S$$
 , $S_{LPMC} = \frac{8}{9}S_{AMC} = \frac{8}{9}\cdot\frac{5}{7}S = \frac{40}{63}S$. Искомое отношение равно $\frac{1}{7}S:\frac{40}{63}S = \frac{9}{40}$. Так как у треугольников ABP и ALP общая высота, проведённая из вершины A , то

б) Так как у треугольников ABP и ALP общая высота, проведённая из вершины A , то $BP: PL = S_{ABP}: S_{ALP} = \frac{1}{7}: \frac{5}{9\cdot 7} = 9:5$. Пусть BP = 9y , PL = 5y .

Пусть $\angle CBL = \gamma$. Тогда из треугольника BPM получаем, что $\cos \gamma = \frac{9y}{2x}$, а из треугольника BFL — что $\cos \gamma = \frac{3x}{14y}$. Приравнивая эти выражения для косинуса, находим, что $x = y\sqrt{21}$, откуда $\cos \gamma = \frac{3\sqrt{3}}{2\sqrt{7}}$.

5. Найдите количество пар целых чисел (x; y), удовлетворяющих условию $5x^2 - 6xy + y^2 = 6^{100}$. **Ответ.** 19594.

Решение. Раскладывая левую и правую части уравнения на множители, получаем $(5x - y)(x - y) = 2^{100} \cdot 3^{100}$. Поскольку каждый из множителей в левой части является целым числом, отсюда следует, что

$$\begin{cases} 5x - y = 2^k \cdot 3^l, \\ x - y = 2^{100-k} \cdot 3^{100-l} \end{cases}$$
 или
$$\begin{cases} 5x - y = -2^k \cdot 3^l, \\ x - y = -2^{100-k} \cdot 3^{100-l}, \end{cases}$$

где k и l – целые числа из отрезка [0;100].

Найдём количество решений первой системы. Выражая из неё х и у, получаем

$$\begin{cases} x = 2^{k-2} \cdot 3^{l} - 2^{98-k} \cdot 3^{100-l}, \\ y = 2^{k-2} \cdot 3^{l} - 5 \cdot 2^{98-k} \cdot 3^{100-l}. \end{cases}$$

Рассмотрим первое уравнение. Показатели в степенях тройки неотрицательны. Сумма показателей в степенях двойки равна 96, поэтому хотя бы один из них положителен, т.е соответствующий ему член является целым числом. Так как в левой части равенства также целое число, то и второй член в правой части

равенства должен быть целым. Значит, для существования целочисленных решений необходимо и достаточно, чтобы $2 \le k \le 98$, $0 \le l \le 100$ — всего $97 \cdot 101 = 9797$ вариантов.

Вторая система также имеет 9797 решений; итак, всего 19594 решений.

6. Найдите все значения параметра a, для каждого из которых найдётся число b такое, что система

$$\begin{cases} x^2 + y^2 + 2a(a + y - x) = 49, \\ y = 15\cos(x - b) - 8\sin(x - b) \end{cases}$$

имеет хотя бы одно решение (x; y).

Ответ. $a \in [-24; 24]$.

Решение. Первое уравнение системы может быть преобразовано к виду $(x-a)^2 + (y+a)^2 = 7^2$, следовательно, оно задаёт окружность радиуса 7 с центром (a; -a).

С помощью введения вспомогательного угла второе уравнение системы может быть приведено к виду $y = 17\cos(x - b - \theta)$. При всевозможных $b \in \mathbb{R}$ графики этих функций заметают полосу $-17 \le y \le 17$.

Для выполнения условия задачи необходимо и достаточно, чтобы окружность, задаваемая первым уравнением, имела хотя бы одну общую точку с данной полосой, откуда $a \in [-24; 24]$.

- 7. В основании четырёхугольной призмы $ABCDA_1B_1C_1D_1$ лежит ромб ABCD, в котором AC = 4 и $\angle DBC = 30^\circ$. Сфера проходит через вершины D, A, B, B_1 , C_1 , D_1 .
 - а) Найдите площадь круга, полученного в сечении сферы плоскостью, проходящей через точки B, C и D.
 - б) Найдите угол A_1CD .
 - в) Пусть дополнительно известно, что радиус сферы равен 5. Найдите объём призмы.

Ответ. a) 16π , б) 90° , в) $48\sqrt{3}$.

- **Решение.** а) Так как диагонали ромба являются биссектрисами его углов, получаем, что острый угол ромба равен 60° . В сечении шара плоскостью *BCD* получаем круг, описанный около треугольника *ABD*. Центром этого круга является точка C, а его радиус равен стороне ромба, то есть 4. Значит, площадь равна 16π .
- б) Пусть O центр шара. Опустим из точки O перпендикуляр OH на плоскость ABCD. Тогда треугольники OHA, OHB и OHD равны по катету и гипотенузе (OH общая, OA = OB = OD как радиусы сферы). Значит, HA = HB = HD, поэтому H центр окружности, описанной около треугольника ABD, т.е. точка H совпадает с точкой C.
- Таким образом, отрезок OC перпендикулярен плоскости основания ABCD. Аналогично доказывается, что отрезок OA_1 перпендикулярен плоскости $A_1B_1C_1D_1$. Итак, диагональ A_1C является высотой призмы, а центр сферы O это её середина. Поэтому $\angle A_1CD = 90^\circ$.
- в) В прямоугольном треугольнике AOC известны гипотенуза AO=5 и катет AC=4. Значит, CO=3, $A_1C=6$; $V=A_1C\cdot S_{ABCD}=6\cdot 8\sqrt{3}=48\sqrt{3}\;.$

1. Решите неравенство
$$\frac{125 + \left(\log_{\frac{1}{2}}(x^4)\right)^3}{\log_2(x^4) \cdot \log_2(x^2) + 6\log_{\frac{1}{2}}(x^4) + 17\log_2(x^2) - 3} \ge 0.$$

Otbet.
$$x \in \left[-2\sqrt[4]{2}; -\sqrt[4]{2} \right] \cup \left(-\frac{1}{2\sqrt{2}}; 0 \right) \cup \left(0; \frac{1}{2\sqrt{2}} \right) \cup \left(\sqrt[4]{2}; 2\sqrt[4]{2} \right].$$

Решение. Данное неравенство равносильно следующему:

$$\frac{125 - \left(2\log_2\left(x^2\right)\right)^3}{2\log_2\left(x^2\right) \cdot \log_2\left(x^2\right) - 12\log_2\left(x^2\right) + 17\log_5\left(x^2\right) - 3} \ge 0.$$

После замены $\log_2 x^2 = t$ неравенство принимает вид $\frac{125 - (2t)^3}{2t^2 + 5t - 3} \ge 0$, откуда $\frac{2t - 5}{(t + 3)(2t - 1)} \le 0$, $t \in (-\infty; -3) \cup \left[\frac{1}{2}; \frac{5}{2}\right]$.

Находим значения х.

При
$$t < -3$$
 получаем $0 < x^2 < \frac{1}{8} \Leftrightarrow x \in \left(-\frac{1}{2\sqrt{2}}; 0\right) \cup \left(0; \frac{1}{2\sqrt{2}}\right)$.

При
$$\frac{1}{2} < t \le \frac{5}{2}$$
 получаем $\sqrt{2} < x^2 \le \sqrt{32} \Leftrightarrow x \in \left[-2\sqrt[4]{2}; -\sqrt[4]{2} \right] \cup \left(\sqrt[4]{2}; 2\sqrt[4]{2} \right]$

2. Решите уравнение
$$\left(\frac{7}{4} - 2\cos 2x\right) \cdot \left|2\cos 2x + 1\right| = \cos x (\cos x - \cos 5x)$$
.

Ответ.
$$x = \pm \frac{\pi}{6} + \frac{k\pi}{2}, k \in \mathbb{Z}$$
.

Решение. Преобразуем правую часть уравнения:

$$\cos x(\cos x - \cos 5x) = \cos x \cdot (2\sin 2x \sin 3x) = \sin 2x \cdot (2\sin 3x \cos x) = \sin 2x \cdot (\sin 4x + \sin 2x) =$$

$$= \sin 2x(2\sin 2x \cos 2x + \sin 2x) = \sin^2 2x(1 + 2\cos 2x) = (1 - \cos^2 2x)(1 + 2\cos 2x).$$

Обозначим $\cos 2x = t$. Тогда уравнение принимает вид $\left(\frac{7}{4} - 2t\right) \cdot \left|1 + 2t\right| = \left(1 + 2t\right) \left(1 - t^2\right)$. Возможны три случая.

а)
$$t = -\frac{1}{2}$$
 является корнем уравнения.

б)
$$t > -\frac{1}{2}$$
. Получаем $\frac{7}{4} - 2t = 1 - t^2$, $t^2 - 2t + \frac{3}{4} = 0$, $t = \frac{1}{2}$ или $t = \frac{3}{2}$. Подходит $t = \frac{1}{2}$.

в)
$$t<-\frac{1}{2}$$
. Получаем $\frac{7}{4}-2t=t^2-1$, $t^2+2t-\frac{11}{4}=0$, $t=\frac{-2\pm\sqrt{15}}{2}$. Корень $t_1=\frac{-2-\sqrt{15}}{2}$ не подходит, так как $t_1<-1$; корень $t_2=\frac{-2+\sqrt{15}}{2}$ не подходит, так как не удовлетворяет условию $t<-\frac{1}{2}$.

Итого:
$$t = \pm \frac{1}{2}$$
, $\cos 2x = \pm \frac{1}{2}$, $2x = \pm \frac{\pi}{3} + k\pi$, $x = \pm \frac{\pi}{6} + \frac{k\pi}{2}$, $k \in \mathbb{Z}$.

3. Решите систему уравнений
$$\begin{cases} \frac{1}{x} + \frac{1}{y+z} = \frac{1}{12} \\ \frac{1}{y} + \frac{1}{x+z} = \frac{1}{6}, \\ \frac{1}{z} + \frac{1}{x+y} = \frac{1}{2}. \end{cases}$$

Ответ. (-4; 2; 1).

Решение. Домножая обе части первого уравнения на 12x(y+z), обе части второго – на 6y(x+z), третьего – на 2z(x+y), получаем систему

$$\begin{cases} 12(x+y+z) = xy + xz, \\ 6(x+y+z) = xy + yz, \\ 2(x+y+z) = xz + yz. \end{cases}$$

Сложив почленно все три уравнения и разделив полученное равенство пополам, получаем равенство xy + xz + yz = 10(x + y + z).

Вычитая из него каждое из уравнений последней системы, находим, что

$$\begin{cases} 8(x+y+z) = xy, \\ -2(x+y+z) = yz, \\ 4(x+y+z) = xz. \end{cases}$$

Разделив первое уравнение на второе (это возможно, так как из ОДЗ исходной системы следует, что $xyz \neq 0$), получаем, что x = -4z, а разделив первое на третье – что y = 2z.

Тогда второе уравнение принимает вид $2z = 2z^2$, откуда z = 1, x = -4, y = 2.

- **4.** На стороне *BC* треугольника *ABC* взята точка *M* такая, что *BM* : MC = 2:7 . Биссектриса *BL* данного треугольника и отрезок *AM* пересекаются в точке *P* под углом 90° .
 - а) Найдите отношение площади треугольника АВР к площади четырёхугольника LPMC.
 - б) На отрезке MC отмечена точка T такая, что MT:TC=1:6. Пусть дополнительно известно, что прямые LT и BC перпендикулярны. Найдите угол CBL.

Ответ. a) 11:70, б)
$$\arccos \frac{\sqrt{11}}{2\sqrt{3}}$$
.

Решение. а) В треугольнике ABM отрезок BP является биссектрисой и высотой, поэтому треугольник ABM равнобедренный, а BP является также его медианой. Обозначим BM = 2x, тогда AB = 2x, MC = 7x. По свойству биссектрисы треугольника, AL: LC = AB: BC = 2x: 9x = 2: 9.

Обозначим площадь треугольника ABC через S . Тогда $S_{ABP} = \frac{1}{2}S_{ABM} = \frac{1}{2}\cdot\frac{2}{9}S_{ABC} = \frac{1}{9}S$. По теореме об

отношении площадей треугольников получаем $\frac{S_{APL}}{S_{AMC}} = \frac{AP}{AM} \cdot \frac{AL}{AC} = \frac{1}{2} \cdot \frac{2}{11} = \frac{1}{11}$, следовательно,

$$S_{APL} = \frac{1}{11}S_{AMC} = \frac{1}{11}\cdot\frac{7}{9}S\;,\; S_{LPMC} = \frac{10}{11}S_{AMC} = \frac{10}{11}\cdot\frac{7}{9}S = \frac{70}{99}S\;.\; \text{Искомое отношение равно}\;\; \frac{1}{9}S:\frac{70}{99}S = \frac{11}{70}\;.$$

б) Так как у треугольников ABP и ALP общая высота, проведённая из вершины A, то $BP:PL=S_{ABP}:S_{ALP}=\frac{1}{9}:\frac{7}{9\cdot 11}=11:7$. Пусть BP=11y, PL=7y.

Пусть $\angle CBL = \gamma$. Тогда из треугольника BPM получаем, что $\cos \gamma = \frac{11y}{2x}$, а из треугольника BFL — что $\cos \gamma = \frac{3x}{18y}$. Приравнивая эти выражения для косинуса, находим, что $x = y\sqrt{33}$, откуда $\cos \gamma = \frac{\sqrt{11}}{2\sqrt{3}}$.

5. Найдите количество пар целых чисел (x; y), удовлетворяющих условию $6x^2 - 7xy + y^2 = 10^{100}$.

Решение. Раскладывая левую и правую части уравнения на множители, получаем $(6x - y)(x - y) = 2^{100} \cdot 5^{100}$. Поскольку каждый из множителей в левой части является целым числом, отсюда следует, что

$$\begin{cases} 6x - y = 2^k \cdot 5^l, \\ x - y = 2^{100-k} \cdot 5^{100-l} \end{cases} \text{ или } \begin{cases} 6x - y = -2^k \cdot 5^l, \\ x - y = -2^{100-k} \cdot 5^{100-l}, \end{cases}$$

где k и l – целые числа из отрезка [0;100].

Найдём количество решений первой системы. Выражая из неё x и y, получаем

$$\begin{cases} x = 2^k \cdot 5^{l-1} - 2^{100-k} \cdot 5^{99-l}, \\ y = 2^k \cdot 5^{l-1} - 6 \cdot 2^{100-k} \cdot 5^{99-l}. \end{cases}$$

Рассмотрим первое уравнение. Показатели в степенях двойки неотрицательны. Сумма показателей в степенях пятёрки равна 98, поэтому хотя бы один из них положителен, т.е соответствующий ему член является целым числом. Так как в левой части равенства также целое число, то и второй член в правой части

равенства должен быть целым. Значит, для существования целочисленных решений необходимо и достаточно, чтобы $0 \le k \le 100$, $1 \le l \le 99$ — всего $99 \cdot 101 = 9999$ вариантов.

Вторая система также имеет 9999 решений; итак, всего 19998 решений.

6. Найдите все значения параметра b, для каждого из которых найдётся число a такое, что система

$$\begin{cases} x^2 + y^2 + 2b(b - x + y) = 4, \\ y = 5\cos(x - a) - 12\sin(x - a) \end{cases}$$

имеет хотя бы одно решение (x; y).

Ответ. $b \in [-15; 15]$.

Решение. Первое уравнение системы может быть преобразовано к виду $(x-b)^2 + (y+b)^2 = 2^2$, следовательно, оно задаёт окружность радиуса 9 с центром (-b; -b).

С помощью введения вспомогательного угла второе уравнение системы может быть приведено к виду $y = 13\cos(x - a - \theta)$. При всевозможных $a \in \mathbb{R}$ графики этих функций заметают полосу $-13 \le y \le 13$.

Для выполнения условия задачи необходимо и достаточно, чтобы окружность, задаваемая первым уравнением, имела хотя бы одну общую точку с данной полосой, откуда $b \in [-15;15]$.

- 7. В основании четырёхугольной призмы $ABCDA_1B_1C_1D_1$ лежит ромб ABCD, в котором CD=3 и $\angle ABD=30^\circ$. Сфера проходит через вершины D, C, B, B_1 , A_1 , D_1 .
 - а) Найдите площадь круга, полученного в сечении сферы плоскостью, проходящей через точки A, C и D.
 - б) Найдите угол C_1AB .
 - в) Пусть дополнительно известно, что радиус сферы равен 6. Найдите объём призмы.

Ответ. a) 9π , б) 90° , в) 81.

- **Решение.** а) Так как диагонали ромба являются биссектрисами его углов, получаем, что острый угол ромба равен 60° . В сечении шара плоскостью ACD получаем круг, описанный около треугольника BCD. Центром этого круга является точка A, а его радиус равен стороне ромба, то есть 3. Значит, площадь равна 9π .
- б) Пусть O центр шара. Опустим из точки O перпендикуляр OH на плоскость ABCD. Тогда треугольники OHC, OHB и OHD равны по катету и гипотенузе (OH общая, OC = OB = OD как радиусы сферы). Значит, HC = HB = HD, поэтому H центр окружности, описанной около треугольника CBD, т.е. точка H совпадает с точкой C.
- Таким образом, отрезок OA перпендикулярен плоскости основания ABCD. Аналогично доказывается, что отрезок OC_1 перпендикулярен плоскости $A_1B_1C_1D_1$. Итак, диагональ AC_1 является высотой призмы, а центр сферы O это её середина. Поэтому $\angle C_1AB = 90^\circ$.
- в) В прямоугольном треугольнике AOC известны гипотенуза CO=6 и катет AC=3. Значит, $AO=3\sqrt{3}$, $C_1A=6\sqrt{3}$; $V=AC_1\cdot S_{ABCD}=6\sqrt{3}\cdot\frac{9\sqrt{3}}{2}=81$.

1. Решите неравенство
$$\frac{\log_2(x^6) \cdot \log_{\frac{1}{2}}(x^2) - \log_{\frac{1}{2}}(x^6) - 8\log_2(x^2) + 2}{8 + \left(\log_{\frac{1}{2}}(x^2)\right)^3} \le 0.$$

Ответ.
$$x \in (-2; -\sqrt[6]{2}] \cup [-\frac{1}{2}; 0] \cup (0; \frac{1}{2}] \cup [\sqrt[6]{2}; 2).$$

Решение. Данное неравенство равносильно следующему:

$$\frac{3\log_2 x^2 \cdot \left(-\log_2 x^2\right) + 3\log_2 x^2 - 8\log_2 x^2 + 2}{8 - \log_2^3 x^2} \le 0.$$

После замены $\log_2 x^2 = t$ неравенство принимает вид $\frac{-3t^2 - 5t + 2}{8 - t^3} \le 0$, откуда $\frac{(2 + t)(1 - 3t)}{2 - t} \le 0$, $t \in (-\infty; -2] \cup \left[\frac{1}{3}; 2\right)$.

Находим значения x.

При
$$t \le -2$$
 получаем $0 < x^2 \le \frac{1}{4} \Leftrightarrow x \in \left[-\frac{1}{2}; 0 \right] \cup \left[0; \frac{1}{2} \right].$

При
$$\frac{1}{3} \le t < 2$$
 получаем $\sqrt[3]{2} \le x^2 < 4 \Leftrightarrow x \in \left(-2; -\sqrt[6]{2}\right] \cup \left[\sqrt[6]{2}; 2\right)$.

2. Решите уравнение
$$\left(3\cos 2x + \frac{9}{4}\right) \cdot \left|1 - 2\cos 2x\right| = \sin x (\sin x - \sin 5x)$$
.

Ответ.
$$x = \pm \frac{\pi}{6} + \frac{k\pi}{2}, k \in \mathbb{Z}$$
.

Решение. Преобразуем правую часть уравнения:

$$\sin x(\sin x - \sin 5x) = \sin x \cdot (-2\sin 2x\cos 3x) = -\sin 2x \cdot (2\sin x\cos 3x) = -\sin 2x \cdot (\sin 4x - \sin 2x) =$$

$$= -\sin 2x(2\sin 2x\cos 2x - \sin 2x) = \sin^2 2x(1 - 2\cos 2x) = (1 - \cos^2 2x)(1 - 2\cos 2x).$$

Обозначим
$$\cos 2x = t$$
 . Тогда уравнение принимает вид $\left(\frac{9}{4} + 3t\right) \cdot \left|1 - 2t\right| = \left(1 - 2t\right) \left(1 - t^2\right)$. Возможны три случая.

а) $t = \frac{1}{2}$ является корнем уравнения.

б)
$$t < \frac{1}{2}$$
. Получаем $\frac{9}{4} + 3t = 1 - t^2$, $t^2 + 3t + \frac{5}{4} = 0$, $t = -\frac{1}{2}$ или $t = -\frac{5}{2}$. Подходит $t = -\frac{1}{2}$.

в)
$$t > \frac{1}{2}$$
. Получаем $\frac{9}{4} + 3t = t^2 - 1$, $t^2 - 3t - \frac{13}{4} = 0$, $t = \frac{3 \pm \sqrt{22}}{2}$. Корень $t_1 = \frac{3 + \sqrt{22}}{2}$ не подходит, так как $t_1 > 1$;

корень
$$t_2 = \frac{3 - \sqrt{22}}{2}$$
 не подходит, так как не удовлетворяет условию $t > \frac{1}{2}$.

Итого:
$$t = \pm \frac{1}{2}$$
, $\cos 2x = \pm \frac{1}{2}$, $2x = \pm \frac{\pi}{3} + k\pi$, $x = \pm \frac{\pi}{6} + \frac{k\pi}{2}$, $k \in \mathbb{Z}$.

3. Решите систему уравнений
$$\begin{cases} \frac{1}{x} + \frac{1}{y+z} = 1, \\ \frac{1}{y} + \frac{1}{x+z} = \frac{4}{3}, \\ \frac{1}{z} + \frac{1}{x+y} = -\frac{4}{5}. \end{cases}$$

Ответ. (2; 3; -1).

Решение. Домножая обе части первого уравнения на x(y+z), обе части второго – на $\frac{3}{4}y(x+z)$, третьего – на $-\frac{5}{4}z(x+y)$, получаем систему

$$\begin{cases} (x+y+z) = xy + xz, \\ \frac{3}{4}(x+y+z) = xy + yz, \\ -\frac{5}{4}(x+y+z) = xz + yz. \end{cases}$$

Сложив почленно все три уравнения и разделив полученное равенство пополам, получаем равенство

$$xy + xz + yz = \frac{1}{4}(x + y + z).$$

Вычитая из него каждое из уравнений последней системы, находим, что

$$\begin{cases} \frac{3}{2}(x+y+z) = xy, \\ -\frac{3}{4}(x+y+z) = yz, \\ -\frac{1}{2}(x+y+z) = xz. \end{cases}$$

Разделив первое уравнение на второе (это возможно, так как из ОДЗ исходной системы следует, что $xyz \neq 0$), получаем, что x = -2z, а разделив первое на третье – что y = -3z.

Тогда второе уравнение принимает вид $3z = -3z^2$, откуда z = -1, x = 2, y = 3.

- **4.** На стороне BC треугольника ABC взята точка M такая, что BM:MC=3:8. Биссектриса BL данного треугольника и отрезок AM пересекаются в точке P под углом 90° .
 - а) Найдите отношение площади треугольника ABP к площади четырёхугольника LPMC .
 - б) На отрезке MC отмечена точка F такая, что MF : FC = 1 : 7. Пусть дополнительно известно, что прямые LF и BC перпендикулярны. Найдите угол CBL.

Ответ. a) 21:100, б)
$$\arccos \frac{2\sqrt{7}}{\sqrt{33}}$$
.

Решение. а) В треугольнике ABM отрезок BP является биссектрисой и высотой, поэтому треугольник ABM равнобедренный, а BP является также его медианой. Обозначим BM = 3x, тогда AB = 3x, MC = 8x. По свойству биссектрисы треугольника, AL: LC = AB: BC = 3x: 11x = 3:11.

Обозначим площадь треугольника ABC через S . Тогда $S_{ABP} = \frac{1}{2}S_{ABM} = \frac{1}{2}\cdot\frac{3}{11}S_{ABC} = \frac{3}{22}S$. По теореме об

отношении площадей треугольников получаем $\frac{S_{APL}}{S_{AMC}} = \frac{AP}{AM} \cdot \frac{AL}{AC} = \frac{1}{2} \cdot \frac{3}{14} = \frac{3}{28}$, следовательно,

$$S_{APL} = \frac{3}{28} \, S_{AMC} = \frac{3}{28} \cdot \frac{8}{11} \, S$$
, $S_{LPMC} = \frac{25}{28} \, S_{AMC} = \frac{25}{28} \cdot \frac{8}{11} \, S = \frac{50}{77} \, S$. Искомое отношение равно $\frac{3}{22} \, S : \frac{50}{77} \, S = \frac{21}{100}$.

б) Так как у треугольников ABP и ALP общая высота, проведённая из вершины A, то $BP:PL=S_{ABP}:S_{ALP}=\frac{3}{22}:\frac{6}{77}=7:4$. Пусть BP=7y, PL=4y.

Пусть $\angle CBL = \gamma$. Тогда из треугольника *BPM* получаем, что $\cos \gamma = \frac{7y}{3x}$, а из треугольника *BFL* – что $\cos \gamma = \frac{4x}{11y}$. Приравнивая эти выражения для косинуса, находим, что $x = \frac{y\sqrt{77}}{2\sqrt{3}}$, откуда $\cos \gamma = \frac{2\sqrt{7}}{\sqrt{33}}$.

5. Найдите количество пар целых чисел (x; y), удовлетворяющих условию $x^2 + 6xy + 5y^2 = 10^{100}$. **Ответ.** 19594.

Решение. Раскладывая левую и правую части уравнения на множители, получаем $(x + 5y)(x + y) = 2^{100} \cdot 5^{100}$. Поскольку каждый из множителей в левой части является целым числом, отсюда следует, что

$$\begin{cases} x + 5y = 2^k \cdot 5^l, \\ x + y = 2^{100-k} \cdot 5^{100-l} \end{cases}$$
 или
$$\begin{cases} x + 5y = -2^k \cdot 5^l, \\ x + y = -2^{100-k} \cdot 5^{100-l} \end{cases}$$

где k и l — целые числа из отрезка [0;100].

Найдём количество решений первой системы. Выражая из неё х и у, получаем

$$\begin{cases} y = 2^{k-2} \cdot 5^l - 2^{98-k} \cdot 5^{100-l}, \\ x = 5 \cdot 2^{98-k} \cdot 5^{100-l} - 2^{k-2} \cdot 5^l. \end{cases}$$

Рассмотрим первое уравнение. Показатели в степенях пятёрки неотрицательны. Сумма показателей в степенях двойки равна 96, поэтому хотя бы один из них положителен, т.е соответствующий ему член является целым числом. Так как в левой части равенства также целое число, то и второй член в правой части равенства должен быть целым. Значит, для существования целочисленных решений необходимо и достаточно, чтобы $2 \le k \le 98$, $0 \le l \le 100$ — всего $97 \cdot 101 = 9797$ вариантов.

Вторая система также имеет 9797 решений; итак, всего 19594 решений.

6. Найдите все значения параметра a, для каждого из которых найдётся число b такое, что система

$$\begin{cases} x^2 + y^2 + 2a(a - x - y) = 64, \\ y = 8\sin(x - 2b) - 6\cos(x - 2b) \end{cases}$$

имеет хотя бы одно решение (x; y).

Ответ. $a \in [-18; 18]$.

Решение. Первое уравнение системы может быть преобразовано к виду $(x-a)^2 + (y-a)^2 = 8^2$, следовательно, оно задаёт окружность радиуса 8 с центром (a;a).

С помощью введения вспомогательного угла второе уравнение системы может быть приведено к виду $y = 10\cos(x - 2b - \theta)$. При всевозможных $b \in \mathbb{R}$ графики этих функций заметают полосу $-10 \le y \le 10$.

Для выполнения условия задачи необходимо и достаточно, чтобы окружность, задаваемая первым уравнением, имела хотя бы одну общую точку с данной полосой, откуда $a \in [-18; 18]$.

- 7. В основании четырёхугольной призмы $ABCDA_1B_1C_1D_1$ лежит ромб ABCD, в котором BD=12 и $\angle BAC=60^\circ$. Сфера проходит через вершины D, A, B, B_1 , C_1 , D_1 .
 - а) Найдите площадь круга, полученного в сечении сферы плоскостью, проходящей через точки A_1 , B_1 и C_1 .
 - б) Найдите угол A_1CB .
 - в) Пусть дополнительно известно, что радиус сферы равен 8. Найдите объём призмы.

Ответ. a) 48π , б) 90° , в) $192\sqrt{3}$.

- **Решение.** а) Так как диагонали ромба являются биссектрисами его углов, то острый угол ромба равен 60° , а $AC = 4\sqrt{3}$. В сечении шара плоскостью $A_1C_1B_1$ получаем круг, описанный около треугольника $C_1B_1D_1$. Центром этого круга является точка A_1 , а его радиус равен стороне ромба, то есть $4\sqrt{3}$. Значит, площадь равна 48π .
- б) Пусть O центр шара. Опустим из точки O перпендикуляр OH на плоскость ABCD. Тогда треугольники OHA, OHB и OHD равны по катету и гипотенузе (OH общая, OA = OB = OD как радиусы сферы). Значит, HA = HB = HD, поэтому H центр окружности, описанной около треугольника ABD, т.е. точка H совпадает с точкой C.
- Таким образом, отрезок OC перпендикулярен плоскости основания ABCD. Аналогично доказывается, что отрезок OA_1 перпендикулярен плоскости $A_1B_1C_1D_1$. Итак, диагональ A_1C является высотой призмы, а центр сферы O это её середина. Поэтому $\angle A_1CB = 90^\circ$.
- в) В прямоугольном треугольнике AOC известны гипотенуза AO=8 и катет $AC=4\sqrt{3}$. Значит, CO=4, $A_1C=8$; $V=A_1C\cdot S_{ABCD}=8\cdot 24\sqrt{3}=192\sqrt{3}$.

1. Решите неравенство
$$\frac{64 + \left(\log_{\frac{1}{5}}\left(x^2\right)\right)^3}{\log_{\frac{1}{5}}\left(x^6\right) \cdot \log_{5}\left(x^2\right) + 5\log_{5}\left(x^6\right) + 14\log_{\frac{1}{5}}\left(x^2\right) + 2} \le 0.$$

Ответ.
$$x \in \left[-25; -\sqrt{5}\right) \cup \left(-\frac{1}{\sqrt[3]{5}}; 0\right) \cup \left(0; \frac{1}{\sqrt[3]{5}}\right) \cup \left(\sqrt{5}; 25\right].$$

Решение. Данное неравенство равносильно следующему:

$$\frac{64 - (\log_5(x^2))^3}{-3\log_5(x^2) \cdot \log_5(x^2) + 15\log_5(x^2) - 14\log_5(x^2) + 2} \le 0.$$

После замены $\log_5 x^2 = t$ неравенство принимает вид $\frac{64 - t^3}{-3t^2 + t + 2} \le 0$, откуда $\frac{4 - t}{(1 - t)(2 + 3t)} \le 0$, $t \in \left(-\infty; -\frac{2}{3}\right) \cup \left(1; 4\right]$.

Находим значения x.

При
$$t < -\frac{2}{3}$$
 получаем $0 < x^2 < 5^{-\frac{2}{3}} \Leftrightarrow x \in \left(-\frac{1}{\sqrt[3]{5}}; 0\right) \cup \left(0; \frac{1}{\sqrt[3]{5}}\right)$.

При $1 < t \le 4$ получаем $5 < x^2 \le 625 \Leftrightarrow x \in \left[-25; -\sqrt{5}\right) \cup \left(\sqrt{5}; 25\right]$.

2. Решите уравнение
$$\left(\frac{7}{4} - 3\cos 2x\right) \cdot \left|1 + 2\cos 2x\right| = \sin x \left(\sin x + \sin 5x\right)$$
.

Ответ.
$$x = \pm \frac{\pi}{6} + \frac{k\pi}{2}, k \in \mathbb{Z}$$
.

Решение. Преобразуем правую часть уравнения:

$$\sin x(\sin x + \sin 5x) = \sin x \cdot 2\sin 3x \cos 2x = \cos 2x \cdot (2\sin x \sin 3x) = \cos 2x \cdot (\cos 2x - \cos 4x) =$$

$$= \cos 2x \left(-2\cos^2 2x + \cos 2x + 1\right) = \cos 2x (1 - \cos 2x)(2\cos 2x + 1).$$

Обозначим $\cos 2x = t$. Тогда уравнение принимает вид $\left(\frac{7}{4} - 3t\right) \cdot \left|2t + 1\right| = t\left(2t + 1\right)(1 - t)$. Возможны три случая.

а)
$$t = -\frac{1}{2}$$
 является корнем уравнения.

б)
$$t > -\frac{1}{2}$$
. Получаем $\frac{7}{4} - 3t = t - t^2$, $t^2 - 4t + \frac{7}{4} = 0$, $t = \frac{1}{2}$ или $t = \frac{7}{2}$. Подходит $t = \frac{1}{2}$.

в)
$$t<-\frac{1}{2}$$
. Получаем $-\frac{7}{4}+3t=t-t^2$, $t^2+2t-\frac{7}{4}=0$, $t=\frac{-2\pm\sqrt{11}}{2}$. Корень $t_1=\frac{-2-\sqrt{11}}{2}$ не подходит, так как $t_1<-1$; корень $t_2=\frac{-2+\sqrt{11}}{2}$ не подходит, так как не удовлетворяет условию $t<-\frac{1}{2}$.

Итого:
$$t = \pm \frac{1}{2}$$
, $\cos 2x = \pm \frac{1}{2}$, $2x = \pm \frac{\pi}{3} + k\pi$, $x = \pm \frac{\pi}{6} + \frac{k\pi}{2}$, $k \in \mathbb{Z}$.

3. Решите систему уравнений
$$\begin{cases} \frac{1}{x} + \frac{1}{y+z} = \frac{6}{5}, \\ \frac{1}{y} + \frac{1}{x+z} = \frac{3}{4}, \\ \frac{1}{z} + \frac{1}{x+y} = \frac{2}{3}. \end{cases}$$

Ответ. (1; 2; 3).

Решение. Домножая обе части первого уравнения на $\frac{5}{6}x(y+z)$, обе части второго – на $\frac{4}{3}y(x+z)$, третьего – на $\frac{3}{2}z(x+y)$, получаем систему

$$\begin{cases} \frac{5}{6}(x+y+z) = xy + xz, \\ \frac{4}{3}(x+y+z) = xy + yz, \\ \frac{3}{2}(x+y+z) = xz + yz. \end{cases}$$

Сложив почленно все три уравнения и разделив полученное равенство пополам, получаем равенство

$$xy + xz + yz = \frac{11}{6}(x + y + z).$$

Вычитая из него каждое из уравнений последней системы, находим, что

$$\begin{cases} \frac{1}{3}(x+y+z) = xy, \\ (x+y+z) = yz, \\ \frac{1}{2}(x+y+z) = xz. \end{cases}$$

Разделив первое уравнение на второе (это возможно, так как из ОДЗ исходной системы следует, что $xyz \neq 0$), получаем, что $x = \frac{1}{3}z$, а разделив первое на третье – что $y = \frac{2}{3}z$.

Тогда второе уравнение принимает вид $2z = \frac{2}{3}z^2$, откуда z = 3, x = 1, y = 2.

- **4.** На стороне BC треугольника ABC взята точка M такая, что BM:MC=3:7. Биссектриса BL данного треугольника и отрезок AM пересекаются в точке P под углом 90° .
 - а) Найдите отношение площади треугольника АВР к площади четырёхугольника LPMC.
 - б) На отрезке MC отмечена точка T такая, что MT:TC=1:6. Пусть дополнительно известно, что прямые LT и BC перпендикулярны. Найдите угол CBL.

Ответ. a) 39:161, б)
$$\arccos \sqrt{\frac{13}{15}}$$
.

Решение. а) В треугольнике ABM отрезок BP является биссектрисой и высотой, поэтому треугольник ABM равнобедренный, а BP является также его медианой. Обозначим BM = 3x, тогда AB = 3x, MC = 7x. По свойству биссектрисы треугольника, AL: LC = AB: BC = 3x: 10x = 3: 10.

Обозначим площадь треугольника ABC через S . Тогда $S_{ABP} = \frac{1}{2}S_{ABM} = \frac{1}{2} \cdot \frac{3}{10}S_{ABC} = \frac{3}{20}S$. По теореме об

отношении площадей треугольников получаем $\frac{S_{APL}}{S_{AMC}} = \frac{AP}{AM} \cdot \frac{AL}{AC} = \frac{1}{2} \cdot \frac{3}{13} = \frac{3}{26}$, следовательно,

$$S_{APL} = \frac{3}{26} S_{AMC} = \frac{3}{26} \cdot \frac{7}{10} S$$
, $S_{LPMC} = \frac{23}{26} S_{AMC} = \frac{23}{26} \cdot \frac{7}{10} S = \frac{161}{260} S$. Искомое отношение равно $\frac{3}{20} S : \frac{161}{260} S = \frac{39}{161}$.

б) Так как у треугольников ABP и ALP общая высота, проведённая из вершины A , то $BP:PL=S_{ABP}:S_{ALP}=\frac{3}{20}:\frac{21}{260}=13:7$. Пусть BP=13y , PL=7y .

Пусть $\angle CBL = \gamma$. Тогда из треугольника BPM получаем, что $\cos \gamma = \frac{13y}{3x}$, а из треугольника BTL — что $\cos \gamma = \frac{4x}{20y}$. Приравнивая эти выражения для косинуса, находим, что $x = y\sqrt{\frac{65}{3}}$, откуда $\cos \gamma = \sqrt{\frac{13}{15}}$.

5. Найдите количество пар целых чисел (x; y), удовлетворяющих условию $x^2 + 7xy + 6y^2 = 15^{50}$. **Ответ.** 4998.

Решение. Раскладывая левую и правую части уравнения на множители, получаем $(x+6y)(x+y)=5^{50}\cdot 3^{50}$. Поскольку каждый из множителей в левой части является целым числом, отсюда следует, что

$$\begin{cases} x + 6y = 5^k \cdot 3^l, \\ x + y = 5^{50-k} \cdot 3^{50-l} \end{cases}$$
 или
$$\begin{cases} x + 6y = -5^k \cdot 3^l, \\ x + y = -5^{50-k} \cdot 3^{50-l} \end{cases}$$

где k и l – целые числа из отрезка [0; 50].

Найдём количество решений первой системы. Выражая из неё x и y, получаем

$$\begin{cases} x = 6 \cdot 5^{49-k} \cdot 3^{50-l} - 5^{k-1} \cdot 3^{l}, \\ y = 5^{k-1} \cdot 3^{l} - 5^{49-k} \cdot 3^{50-l}. \end{cases}$$

Рассмотрим первое уравнение. Показатели в степенях тройки неотрицательны. Сумма показателей в степенях пятёрки равна 48, поэтому хотя бы один из них положителен, т.е соответствующий ему член является целым числом. Так как в левой части равенства также целое число, то и второй член в правой части равенства должен быть целым. Значит, для существования целочисленных решений необходимо и достаточно, чтобы $1 \le k \le 49$, $0 \le l \le 50$ — всего $49 \cdot 51 = 2499$ вариантов.

Вторая система также имеет 2499 решений; итак, всего 4998 решений.

6. Найдите все значения параметра b, для каждого из которых найдётся число a такое, что система

$$\begin{cases} x^2 + y^2 + 2b(b+x+y) = 81, \\ y = 4\cos(x+3a) - 3\sin(x+3a) \end{cases}$$

имеет хотя бы одно решение (x; y).

Ответ. $b \in [-14; 14]$.

Решение. Первое уравнение системы может быть преобразовано к виду $(x+b)^2 + (y+b)^2 = 9^2$, следовательно, оно задаёт окружность радиуса 9 с центром (-b; -b).

С помощью введения вспомогательного угла второе уравнение системы может быть приведено к виду $y = 5\cos(x + 3a - \theta)$. При всевозможных $a \in \mathbb{R}$ графики этих функций заметают полосу $-5 \le y \le 5$.

Для выполнения условия задачи необходимо и достаточно, чтобы окружность, задаваемая первым уравнением, имела хотя бы одну общую точку с данной полосой, откуда $b \in [-14;14]$.

- 7. В основании четырёхугольной призмы $ABCDA_1B_1C_1D_1$ лежит ромб ABCD, в котором BD=3 и $\angle ADC=60^\circ$. Сфера проходит через вершины D, C, B, B_1 , A_1 , D_1 .
 - а) Найдите площадь круга, полученного в сечении сферы плоскостью, проходящей через точки A_1 , C_1 и D_1 .
 - б) Найдите угол B_1C_1A .
 - в) Пусть дополнительно известно, что радиус сферы равен 2. Найдите объём призмы.

Ответ. a) 3π , б) 90° , в) $3\sqrt{3}$.

- **Решение.** а) Так как BD=3 и острый угол ромба равен 60° , то $AC=\sqrt{3}$. В сечении шара плоскостью $A_1C_1D_1$ получаем круг, описанный около треугольника $A_1B_1D_1$. Центром этого круга является точка C_1 , а его радиус равен стороне ромба, то есть $\sqrt{3}$. Значит, площадь равна 3π .
- б) Пусть O центр шара. Опустим из точки O перпендикуляр OH на плоскость ABCD. Тогда треугольники OHC, OHB и OHD равны по катету и гипотенузе (OH общая, OC = OB = OD как радиусы сферы). Значит, HC = HB = HD, поэтому H центр окружности, описанной около треугольника BCD, т.е. точка H совпадает с точкой A.
- Таким образом, отрезок OA перпендикулярен плоскости основания ABCD. Аналогично доказывается, что отрезок OC_1 перпендикулярен плоскости $A_1B_1C_1D_1$. Итак, диагональ AC_1 является высотой призмы, а центр сферы O это её середина. Поэтому $\angle B_1C_1A = 90^\circ$.
- в) В прямоугольном треугольнике AOC известны гипотенуза CO=2 и катет $AC=\sqrt{3}$. Значит, AO=1 , $AC_1=2$; $V=AC_1\cdot S_{ABCD}=2\cdot\frac{3\sqrt{3}}{2}=3\sqrt{3}$.

11 класс, билеты 5-8

Задача считается полностью решённой (и за неё начисляется максимально возможное количество баллов), только если в тексте решения приведены все необходимые преобразования и полностью объяснены все имеющиеся логические шаги, при этом полученные ответы приведены к упрощённому виду. Наличие верного ответа не гарантирует выставление положительного балла за задачу.

 1.(5) Левая часть приведена к алгебраической функции относительно одного логарифма.
 +2 балла;

 решено полученное алгебраическое неравенство.
 +1 балл;

 потеряны отрицательные решения.
 +1 баллов за задачу;

 в ответ включён x = 0 +1 баллов за задачу;

 2.(7) Получено алгебраическое уравнение относительно $\cos 2x$ +3 балла;

 +1 решено алгебраическое уравнение относительно $\cos 2x$ +3 балла;

 - при этом не сделан (неверно сделан) отбор корней
 1 балл вместо 3 баллов;

 4.(8) Найдено, в каком отношении биссектриса делит сторону
 +2 балла;

 найдено отношение площадей
 +3 балла;

 найден угол
 +3 балла.

Итого – 50 баллов.

1. Решите уравнение $x^{\log_2(8x)} = \frac{x^7}{8}$.

Ответ. x = 2, x = 8.

Решение. Логарифмируя по основанию 2, получаем $\log_2 x \cdot \log_2(8x) = \log_2 x^7 - \log_2 8$, что равносильно следующему: $\log_2^2 x + 3\log_2 x = 7\log_2 x - 3 \Leftrightarrow \log_2^2 x - 4\log_2 x + 3 = 0$, откуда $\log_2 x = 1$ или $\log_2 x = 3$; x = 2 или x = 8.

2. Решите уравнение $\frac{1}{2} \left| \cos 2x + \frac{1}{2} \right| = \sin^2 3x - \sin x \sin 3x$.

Ответ. $x = \pm \frac{\pi}{6} + \frac{k\pi}{2}, k \in \mathbb{Z}$.

Решение. Преобразуем правую часть уравнения:

$$\sin^2 3x - \sin x \sin 3x = \sin 3x (\sin 3x - \sin x) = \sin 3x \cdot 2 \cos 2x \sin x = \cos 2x \cdot (2 \sin x \sin 3x) = \cos 2x \cdot (\cos 2x - \cos 4x) =$$

$$= \cos 2x (-2 \cos^2 2x + \cos 2x + 1) = \cos 2x (2 \cos 2x + 1) (1 - \cos 2x).$$

Обозначим $\cos 2x = t$. Тогда уравнение принимает вид $\frac{1}{4} \cdot |2t+1| = t(2t+1)(1-t)$. Возможны три случая.

а) $t = -\frac{1}{2}$ является корнем уравнения.

б)
$$t > -\frac{1}{2}$$
. Получаем $\frac{1}{4} = -t^2 + t$, $t^2 - t + \frac{1}{4} = 0$, $t = \frac{1}{2}$.

в) $t < -\frac{1}{2}$. Получаем $-\frac{1}{4} = -t^2 + t$, $t^2 - t - \frac{1}{4} = 0$, $t = \frac{1 \pm \sqrt{2}}{2}$. Оба корня не удовлетворяют условию $t < -\frac{1}{2}$, поэтому они не полхолят.

Итого:
$$t = \pm \frac{1}{2}$$
, $\cos 2x = \pm \frac{1}{2}$, $2x = \pm \frac{\pi}{3} + k\pi$, $x = \pm \frac{\pi}{6} + \frac{k\pi}{2}$, $k \in \mathbb{Z}$.

3. Найдите количество натуральных чисел k, не превосходящих 242400 и таких, что $k^2 + 2k$ делится нацело на 303. **Ответ.** 3200 .

Решение. Разложив делимое и делитель на множители, получаем условие k(k+2):(3·101). Значит, одно из чисел k или (k+2) делится на 101. Рассмотрим два случая.

- а) k:101, т.е. k = 101p, p \in Z . Тогда получаем 101p(101p + 2):(3 · 101) \Leftrightarrow p(101p + 2):3 . Первый множитель делится на 3 при p = 3q, q \in Z , а второй при p = 3q + 2, q \in Z , откуда получаем, что k = 303q , k = 303q + 202 , q \in Z .
- б) (k+2):101, т.е. $k=101p+99, p\in \mathbb{Z}$. Тогда получаем (101p+99)(101p+101): $(3\cdot101)\Leftrightarrow (101p+99)(p+1)$:3. Первый множитель делится на 3 при $p=3q, q\in \mathbb{Z}$, а второй при $p=3q+2, q\in \mathbb{Z}$, откуда получаем, что k=303q+99, $k=303q+301, q\in \mathbb{Z}$.

Итак, условию задачи удовлетворяют числа, дающие остатки 0, 202, 99, 301 при делении на 303, то есть подходят каждые 4 из 303 подряд идущих чисел. Так как $242400 = 303 \cdot 800$, получаем $4 \cdot 800 = 3200$ чисел.

4. Решите систему $\begin{cases} 3x \ge 2y + 16, \\ x^4 + 2x^2y^2 + y^4 + 25 - 26x^2 - 26y^2 = 72xy. \end{cases}$

Ответ. (6;1).

Решение. Преобразуем уравнение системы (добавляем к обеим частям $36x^2 + 36y^2$):

$$(x^{2} + y^{2})^{2} + 25 + 10x^{2} + 10y^{2} = 36x^{2} + 36y^{2} + 72xy \Leftrightarrow (x^{2} + y^{2} + 5)^{2} = (6x + 6y)^{2} \Leftrightarrow \begin{cases} x^{2} + y^{2} + 5 = 6x + 6y, \\ x^{2} + y^{2} + 5 = -6x - 6y \end{cases} \Leftrightarrow \begin{bmatrix} (x - 3)^{2} + (y - 3)^{2} = 13, \\ (x + 3)^{2} + (y + 3)^{2} = 13. \end{cases}$$

Получаем две окружности радиуса $\sqrt{13}\,$ с центрами в точках $(3;3)\,$ и (-3;-3).

Неравенство системы задаёт полуплоскость. Рассмотрим взаимное расположение каждой из окружностей с прямой $y = \frac{3x}{2} - 8$, являющейся границей этой полуплоскости.

a)
$$\begin{cases} (x-3)^2 + (y-3)^2 = 13, \\ y = \frac{3}{2}x - 8 \end{cases} \Leftrightarrow \begin{cases} (x-3)^2 + \left(\frac{3x}{2} - 11\right)^2 = 13, \\ y = \frac{3}{2}x - 8 \end{cases} \Leftrightarrow \begin{cases} \frac{13}{4}x^2 - 39x + 117 = 0, \\ y = \frac{3}{2}x - 8 \end{cases} \Leftrightarrow \begin{cases} x = 6, \\ y = 1. \end{cases}$$

$$\begin{cases} (x+3)^2 + (y+3)^2 = 13, \\ y = \frac{3}{2}x - 8 \end{cases} \Leftrightarrow \begin{cases} (x+3)^2 + \left(\frac{3x}{2} - 5\right)^2 = 13, \\ y = \frac{3}{2}x - 8 \end{cases} \Leftrightarrow \begin{cases} \frac{13}{4}x^2 - 9x + 21 = 0, \\ y = \frac{3}{2}x - 8 \end{cases} \Leftrightarrow \varnothing.$$

При этом центры рассматриваемых окружностей – точки (-3, -3) и (3, 3) – не лежат в полуплоскости, так как их координаты не удовлетворяют неравенству. Поэтому вторая окружность не имеет общих точек с полуплоскостью, а первая имеет единственную общую точку (6, 1).

- **5.** На ребре SA правильной четырёхугольной пирамиды SABCD с вершиной S отмечена точка K такая, что AK:KS=2:3. Точка K является вершиной прямого кругового конуса, на окружности основания которого лежат три вершины пирамиды SABCD.
 - а) Найдите отношение CS: CD.
 - б) Пусть дополнительно известно, что высота пирамиды SABCD равна 5. Найдите объём конуса.

Ответ. a)
$$\sqrt{3}$$
, б) $V = \frac{9\pi}{\sqrt{5}}$.

Решение. Пусть точка H — центр основания пирамиды. Рассмотрим треугольники AHK, BHK, CHK, DHK. У них сторона HK общая, а стороны AH, BH, CH, DH равны между собой. Поскольку углы BHK и DHK прямые, угол AHK острый, а угол CHK тупой, отсюда следует, что CK > BK = DK > AK.

Так как точка K равноудалена от трёх вершин пирамиды, получаем, что BK = DK = SK. Значит, точки B, D и S лежат на окружности основания конуса.

- а) Рассмотрим треугольник ABS. Пусть AK = 2x, SK = 3x. Тогда BS = 5x, BK = 3x. Из равнобедренного треугольника BKS находим, что $\cos \angle ASB = \frac{BS}{2BK} = \frac{5}{6}$. Далее по теореме косинусов для треугольника ABS получаем, что $AB = \frac{5x}{\sqrt{3}}$. Значит, $\frac{CS}{CD} = \frac{AS}{AB} = \sqrt{3}$.
- б) Высота конуса равна расстоянию от точки K до плоскости BSD . Так как KS:AS=3:5 , то это расстояние равно $\frac{3}{5}$ расстояния от точки A до плоскости BSD , т.е $\frac{3}{5}AH=\frac{3}{5\sqrt{2}}AB=x\sqrt{\frac{3}{2}}$. Образующая конуса это отрезок KS=3x . Значит, радиус основания конуса равен $\sqrt{9x^2-\frac{3}{2}x^2}=x\sqrt{\frac{15}{2}}$. Тогда его объём $V=\frac{\pi}{3}\cdot\frac{15}{2}x^2\cdot x\sqrt{\frac{3}{2}}=\frac{5\pi\sqrt{3}x^3}{2\sqrt{2}}$.

Из прямоугольного треугольника ASH по теореме Пифагора получаем $25x^2=\frac{25x^2}{6}+25$, откуда $x=\sqrt{\frac{6}{5}}$. Значит, $V=\frac{9\pi}{\sqrt{5}}$.

6. Найдите все значения параметра b, для каждого из которых найдётся такое число a, что система

$$\begin{cases} y = -b - x^2, \\ x^2 + y^2 + 8a^2 = 4 + 4a(x + y) \end{cases}$$

имеет хотя бы одно решение (x; y).

Ответ.
$$b \le 2\sqrt{2} + \frac{1}{4}$$
.

- **Решение.** Второе уравнение системы может быть преобразовано к виду $(x-2a)^2 + (y-2a)^2 = 2^2$, следовательно, оно задаёт окружность радиуса 2 с центром (2a; 2a). При всевозможных $a \in \mathbb{R}$ графики этих функций заметают полосу $x-2\sqrt{2} \le y \le x+2\sqrt{2}$.
- Для выполнения условия задачи необходимо и достаточно, чтобы парабола, задаваемая первым уравнением, имела хотя бы одну общую точку с данной полосой.
- Найдём значение параметра b, при котором парабола касается нижней границы полосы, т.е. прямой $y=x-2\sqrt{2}$. Это означает, что уравнение $-b-x^2=x-2\sqrt{2}$ имеет ровно одно решение, откуда $b=2\sqrt{2}+\frac{1}{4}$.

При этом ордината вершины параболы $y_0 = -2\sqrt{2} - \frac{1}{4}$. Подходят все значения b , при которых $y_{\rm B} \ge y_0$, т.е.

$$-b \ge -2\sqrt{2} - \frac{1}{4}, \ b \le 2\sqrt{2} + \frac{1}{4}$$

- 7. В углы A и B треугольника ABC вписаны соответственно окружности с центрами O_1 и O_2 равного радиуса, точка O центр окружности, вписанной в треугольник ABC. Данные окружности касаются стороны AB в точках K_1 , K_2 и K соответственно, при этом $AK_1 = 4$, $BK_2 = 6$, и AB = 16.
 - а) Найдите длину отрезка AK.
 - б) Пусть окружность с центром O_1 касается стороны AC в точке K_3 . Найдите угол CAB, если известно, что точка O_1 является центром окружности, описанной около треугольника OK_1K_3 .

Ответ. a)
$$AK = \frac{32}{5}$$
, б) $\angle CAB = 2 \arcsin \frac{3}{5} = \arccos \frac{7}{25}$.

- **Решение.** а) Прямые AO_1 и BO_2 являются биссектрисами углов A и B треугольника, поэтому они пересекаются в точке O центре вписанной окружности. Обозначим радиусы окружностей с центрами O_1 и O_2 через r, а радиус вписанной окружности через R. Треугольники OKB и O_2K_2B подобны, коэффициент подобия равен $\frac{R}{r}$, поэтому $BK = \frac{6R}{r}$. Аналогично $AK = \frac{4R}{r}$, откуда $\frac{10R}{r} = 16$, $AK = \frac{32}{5}$.
- б) Из условия следует, что $O_1O = O_1K_1 = r$. Опустим из точки O_1 перпендикуляр O_1H на отрезок OK. Тогда $OH = R r = \frac{3}{5}r$, $\angle OAB = \angle OO_1H = \arcsin\frac{OH}{OO_1} = \arcsin\frac{3}{5}$. Значит, $\angle CAB = 2\arcsin\frac{3}{5} = \arccos\frac{7}{25}$.

1. Решите уравнение $x^{\log_3(27x^2)} = \frac{x^9}{81}$.

Ответ. x = 3, x = 9.

Решение. Логарифмируя по основанию 3, получаем $\log_3 x \cdot \log_3 \left(27x^2\right) = \log_3 x^9 - \log_3 81$, что равносильно следующему: $2\log_3^2 x + 3\log_3 x = 9\log_3 x - 4 \Leftrightarrow \log_3^2 x - 3\log_3 x + 2 = 0$, откуда $\log_3 x = 1$ или $\log_3 x = 2$; x = 3 или x = 9.

2. Решите уравнение $\frac{1}{2} \left| \cos 2x - \frac{1}{2} \right| = \cos^2 3x + \cos x \cos 3x$.

Ответ. $x = \pm \frac{\pi}{6} + \frac{k\pi}{2}, k \in \mathbb{Z}$.

Решение. Преобразуем правую часть уравнения:

$$\cos^2 3x + \cos x \cos 3x = \cos 3x (\cos x + \cos 3x) = \cos 3x \cdot 2\cos 2x \cos x = \cos 2x \cdot (2\cos x \cos 3x) = \cos 2x \cdot (\cos 2x + \cos 4x) = \cos 2x (2\cos^2 2x + \cos 2x - 1) = \cos 2x (\cos 2x + 1)(2\cos 2x - 1).$$

Обозначим $\cos 2x = t$. Тогда уравнение принимает вид $\frac{1}{4} \cdot \left| 2t - 1 \right| = t \left(t + 1 \right) \left(2t - 1 \right)$. Возможны три случая.

- а) $t = \frac{1}{2}$ является корнем уравнения.
- б) $t > \frac{1}{2}$. Получаем $\frac{1}{4} = t^2 + t$, $t^2 + t \frac{1}{4} = 0$, $t = \frac{-1 \pm \sqrt{2}}{2}$. Оба корня не удовлетворяют условию $t > \frac{1}{2}$, поэтому они не подходят.
- в) $t < \frac{1}{2}$. Получаем $-\frac{1}{4} = t^2 + t$, $t^2 + t + \frac{1}{4} = 0$, $t = -\frac{1}{2}$.

Итого: $t = \pm \frac{1}{2}$, $\cos 2x = \pm \frac{1}{2}$, $2x = \pm \frac{\pi}{3} + k\pi$, $x = \pm \frac{\pi}{6} + \frac{k\pi}{2}$, $k \in \mathbb{Z}$.

3. Найдите количество натуральных чисел k, не превосходящих 353500 и таких, что $k^2 + k$ делится нацело на 505. **Ответ.** 2800 .

Решение. Разложив делимое и делитель на множители, получаем условие k(k+1): $(5\cdot 101)$. Значит, одно из чисел k или (k+1) делится на 101. Рассмотрим два случая.

- а) k:101, т.е. k = 101p, p \in Z . Тогда получаем 101p(101p + 1):(5 · 101) \Leftrightarrow p(101p + 1):5 . Первый множитель делится на 5 при p = 5q, q \in Z , а второй при p = 5q + 4, q \in Z , откуда получаем, что k = 505q , k = 505q + 404 , q \in Z .
- б) (k+1):101, т.е. $k=101p+100, p\in \mathbb{Z}$. Тогда получаем (101p+100)(101p+101): $(5\cdot 101)\Leftrightarrow (101p+100)(p+1)$:5. Первый множитель делится на 5 при $p=5q, q\in \mathbb{Z}$, а второй при $p=5q+4, q\in \mathbb{Z}$, откуда получаем, что k=505q+100, k=505q+504, $q\in \mathbb{Z}$.

Итак, условию задачи удовлетворяют числа, дающие остатки 0,404,100,504 при делении на 505, то есть подходят каждые 4 из 505 подряд идущих чисел. Так как $353500 = 505 \cdot 700$, получаем $4 \cdot 700 = 2800$ чисел.

4. Решите систему $\begin{cases} 2x \ge 14 + y, \\ x^4 + 2x^2y^2 + y^4 + 144 - 40x^2 - 40y^2 = 128xy. \end{cases}$

Ответ. (8; 2).

Решение. Преобразуем уравнение системы (добавляем к обеим частям $64x^2 + 64y^2$):

$$(x^{2} + y^{2})^{2} + 144 + 24x^{2} + 24y^{2} = 64x^{2} + 64y^{2} + 128xy \Leftrightarrow (x^{2} + y^{2} + 12)^{2} = (8x + 8y)^{2} \Leftrightarrow \begin{cases} x^{2} + y^{2} + 12 = 8x + 8y, \\ x^{2} + y^{2} + 12 = -8x - 8y \end{cases} \Leftrightarrow \begin{bmatrix} (x - 4)^{2} + (y - 4)^{2} = 20, \\ (x + 4)^{2} + (y + 4)^{2} = 20. \end{cases}$$

Получаем две окружности радиуса $2\sqrt{5}$ с центрами в точках (4;4) и (-4;-4).

Неравенство системы задаёт полуплоскость. Рассмотрим взаимное расположение каждой из окружностей с прямой y = 2x - 14, являющейся границей этой полуплоскости.

a)
$$\begin{cases} (x-4)^2 + (y-4)^2 = 20, \Leftrightarrow \begin{cases} (x-4)^2 + (2x-18)^2 = 20, \Leftrightarrow \begin{cases} 5x^2 - 80x + 320 = 0, \Leftrightarrow \\ y = 2x - 14 \end{cases} \Leftrightarrow \begin{cases} x = 8, \\ y = 2x - 14 \end{cases}$$

$$\begin{cases} (x+4)^2 + (y+4)^2 = 20, \Leftrightarrow \begin{cases} (x+4)^2 + (2x-10)^2 = 20, \Leftrightarrow \\ y = 2x-14 \end{cases} \Leftrightarrow \begin{cases} 5x^2 - 32x + 96 = 0, \Leftrightarrow \emptyset. \end{cases}$$

- При этом центры рассматриваемых окружностей точки (4;4) и (-4;-4) не лежат в полуплоскости, так как их координаты не удовлетворяют неравенству. Поэтому вторая окружность не имеет общих точек с полуплоскостью, а первая имеет единственную общую точку (8;2).
- **5.** На ребре SB правильной четырёхугольной пирамиды SABCD с вершиной S отмечена точка L такая, что BL:LS=2:5. Точка L является вершиной прямого кругового конуса, на окружности основания которого лежат три вершины пирамиды SABCD.
 - а) Найдите отношение AS: CD.
 - б) Пусть дополнительно известно, что высота пирамиды SABCD равна 7. Найдите объём конуса.

Ответ. a)
$$\sqrt{\frac{5}{3}}$$
, б) $V = \frac{125\pi}{\sqrt{21}}$.

- **Решение.** Пусть точка H центр основания пирамиды. Рассмотрим треугольники AHL, BHL, CHL, DHL. У них сторона HL общая, а стороны AH, BH, CH, DH равны между собой. Поскольку углы AHL и CHL прямые, угол BHL острый, а угол DHL тупой, отсюда следует, что DL > AL = CL > BL.
- Так как точка L равноудалена от трёх вершин пирамиды, получаем, что AL = CL = SL. Значит, точки A, C и S лежат на окружности основания конуса.
- а) Рассмотрим треугольник ABS. Пусть BL=2x, SL=5x. Тогда AS=7x, AL=5x. Из равнобедренного треугольника ALS находим, что $\cos \angle LSA = \frac{AS}{2SL} = \frac{7}{10}$. Далее по теореме косинусов для треугольника ABS получаем, что $AB = \frac{7x\sqrt{3}}{\sqrt{5}}$. Значит, $\frac{AS}{CD} = \frac{AS}{AB} = \sqrt{\frac{5}{3}}$.
- б) Высота конуса равна расстоянию от точки L до плоскости ASC . Так как LS:BS=5:7 , то это расстояние равно $\frac{5}{7}$ расстояния от точки B до плоскости ASC , т.е $\frac{5}{7}BH=\frac{5}{7\sqrt{2}}AB=x\sqrt{\frac{15}{2}}$. Образующая конуса это отрезок LS=5x . Значит, радиус основания конуса равен $\sqrt{25x^2-\frac{15}{2}x^2}=x\sqrt{\frac{35}{2}}$. Тогда его объём $V=\frac{\pi}{3}\cdot\frac{35}{2}x^2\cdot x\sqrt{\frac{15}{2}}=\frac{35\pi\sqrt{15}x^3}{6\sqrt{2}}$.
- Из прямоугольного треугольника BSH по теореме Пифагора получаем $49x^2=\frac{147x^2}{10}+49$, откуда $x=\sqrt{\frac{10}{7}}$. Значит, $V=\frac{125\pi}{\sqrt{21}}$.
- **6.** Найдите все значения параметра a, для каждого из которых найдётся такое число b, что система

$$\begin{cases} y = x^2 - a, \\ x^2 + y^2 + 8b^2 = 4b(y - x) + 1 \end{cases}$$

имеет хотя бы одно решение (x; y).

Ответ.
$$a \ge -\sqrt{2} - \frac{1}{4}$$
.

- **Решение.** Второе уравнение системы может быть преобразовано к виду $(x+2b)^2 + (y-2b)^2 = 1^2$, следовательно, оно задаёт окружность радиуса 1 с центром (-2b; 2b). При всевозможных $b \in \mathbb{R}$ графики этих функций заметают полосу $-x \sqrt{2} \le y \le -x + \sqrt{2}$.
- Для выполнения условия задачи необходимо и достаточно, чтобы парабола, задаваемая первым уравнением, имела хотя бы одну общую точку с данной полосой.

Найдём значение параметра a, при котором парабола касается верхней границы полосы, т.е. прямой $y=-x+\sqrt{2}$. Это означает, что уравнение $x^2-a=-x+\sqrt{2}$ имеет ровно одно решение, откуда $a=-\sqrt{2}-\frac{1}{4}$.

При этом ордината вершины параболы $y_0 = \sqrt{2} + \frac{1}{4}$. Подходят все значения a, при которых $y_{\rm B} \le y_0$, т.е. $-a \le \sqrt{2} + \frac{1}{4}$, $a \ge -\sqrt{2} - \frac{1}{4}$.

- 7. В углы B и C треугольника ABC вписаны соответственно окружности с центрами O_1 и O_2 равного радиуса, точка O центр окружности, вписанной в треугольник ABC. Данные окружности касаются стороны BC в точках K_1 , K_2 и K соответственно, при этом BK_1 = 4, CK_2 = 8, и BC = 18.
 - а) Найдите длину отрезка CK .
 - б) Пусть окружность с центром O_1 касается стороны AB в точке K_3 . Найдите угол ABC, если известно, что точка O_1 является центром окружности, описанной около треугольника OK_1K_3 .

Ответ. a) CK = 12, б) $\angle ABC = 60^{\circ}$.

- **Решение.** а) Прямые CO_2 и BO_1 являются биссектрисами углов C и B треугольника, поэтому они пересекаются в точке O центре вписанной окружности. Обозначим радиусы окружностей с центрами O_1 и O_2 через r, а радиус вписанной окружности через R. Треугольники OKB и O_1K_1B подобны, коэффициент подобия равен $\frac{R}{r}$, поэтому $BK = \frac{4R}{r}$. Аналогично $CK = \frac{8R}{r}$, откуда $\frac{12R}{r} = 18$, CK = 12.
- б) Из условия следует, что $O_1O = O_1K_1 = r$. Опустим из точки O_1 перпендикуляр O_1H на отрезок OK. Тогда $OH = R r = \frac{1}{2}r$, $\angle OBC = \angle OO_1H = \arcsin\frac{OH}{OO_1} = \arcsin\frac{1}{2} = 30^\circ$. Значит, $\angle ABC = 2 \cdot 30^\circ = 60^\circ$.

1. Решите уравнение $x^{\log_2(0,25x^3)} = 512x^4$.

Ответ.
$$x = \frac{1}{2}$$
, $x = 8$.

Решение. Логарифмируя по основанию 2, получаем $\log_2 x \cdot \log_2 \left(\frac{1}{4}x^3\right) = \log_2 x^4 + \log_2 512$, что равносильно следующему: $3\log_2^2 x - 2\log_2 x = 4\log_2 x + 9 \Leftrightarrow \log_2^2 x - 2\log_2 x - 3 = 0$, откуда $\log_2 x = -1$ или $\log_2 x = 3$; $x = \frac{1}{2}$ или x = 8.

2. Решите уравнение $\frac{1}{2} \left| \cos 2x + \frac{1}{2} \right| = \sin^2 x + \sin x \sin 5x$.

Ответ.
$$x = \pm \frac{\pi}{6} + \frac{k\pi}{2}, k \in \mathbb{Z}$$
.

Решение. Преобразуем правую часть уравнения:

$$\sin^2 x + \sin x \sin 5x = \sin x (\sin x + \sin 5x) = \sin x \cdot 2 \cos 2x \sin 3x = \cos 2x \cdot (2 \sin x \sin 3x) = \cos 2x \cdot (\cos 2x - \cos 4x) =$$

$$= \cos 2x (-2 \cos^2 2x + \cos 2x + 1) = \cos 2x (2 \cos 2x + 1) (1 - \cos 2x).$$

Обозначим $\cos 2x = t$. Тогда уравнение принимает вид $\frac{1}{4} \cdot |2t+1| = t(2t+1)(1-t)$. Возможны три случая.

а) $t = -\frac{1}{2}$ является корнем уравнения.

б)
$$t > -\frac{1}{2}$$
. Получаем $\frac{1}{4} = -t^2 + t$, $t^2 - t + \frac{1}{4} = 0$, $t = \frac{1}{2}$.

в) $t<-\frac{1}{2}$. Получаем $-\frac{1}{4}=-t^2+t$, $t^2-t-\frac{1}{4}=0$, $t=\frac{1\pm\sqrt{2}}{2}$. Оба корня не удовлетворяют условию $t<-\frac{1}{2}$, поэтому они не подходят.

Итого:
$$t = \pm \frac{1}{2}$$
, $\cos 2x = \pm \frac{1}{2}$, $2x = \pm \frac{\pi}{3} + k\pi$, $x = \pm \frac{\pi}{6} + \frac{k\pi}{2}$, $k \in \mathbb{Z}$.

3. Найдите количество натуральных чисел k, не превосходящих 333300 и таких, что $k^2 - 2k$ делится нацело на 303. **Ответ.** 4400.

Решение. Разложив делимое и делитель на множители, получаем условие k(k-2): $(3\cdot 101)$. Значит, одно из чисел k или (k-2) делится на 101. Рассмотрим два случая.

- а) k:101, т.е. k=101p, $p\in Z$. Тогда получаем $101p(101p-2):(3\cdot 101)\Leftrightarrow p(101p-2):3$. Первый множитель делится на 3 при p=3q, $q\in Z$, а второй при p=3q+1, $q\in Z$, откуда получаем, что k=303q, k=303q+101, $q\in Z$.
- б) (k-2):101, т.е. $k=101p+2, p\in Z$. Тогда получаем (101p+2)101p: $(3\cdot101)\Leftrightarrow (101p+2)p$:3. Первый множитель делится на 3 при $p=3q+2, q\in Z$, а второй при $p=3q, q\in Z$, откуда получаем, что k=303q+204, k=303q+2, $q\in Z$.

Итак, условию задачи удовлетворяют числа, дающие остатки 0,101,204,2 при делении на 303, то есть подходят каждые 4 из 303 подряд идущих чисел. Так как $333300 = 303 \cdot 1100$, получаем $4 \cdot 1100 = 4400$ чисел.

4. Решите систему
$$\begin{cases} 2x + y + 8 \le 0, \\ x^4 + 2x^2y^2 + y^4 + 9 - 10x^2 - 10y^2 = 8xy. \end{cases}$$

Ответ. (-3; -2).

Решение. Преобразуем уравнение системы (добавляем к обеим частям $4x^2 + 4y^2$):

$$(x^{2} + y^{2})^{2} + 9 - 6x^{2} - 6y^{2} = 4x^{2} + 4y^{2} + 8xy \Leftrightarrow (x^{2} + y^{2} - 3)^{2} = (2x + 2y)^{2} \Leftrightarrow \begin{cases} x^{2} + y^{2} - 3 = 2x + 2y, \\ x^{2} + y^{2} - 3 = -2x - 2y \end{cases} \Leftrightarrow \begin{cases} (x - 1)^{2} + (y - 1)^{2} = 5, \\ (x + 1)^{2} + (y + 1)^{2} = 5. \end{cases}$$

Получаем две окружности радиуса $\sqrt{5}$ с центрами в точках (1; 1) и (–1; –1).

Неравенство системы задаёт полуплоскость. Рассмотрим взаимное расположение каждой из окружностей с прямой y = -2x - 8, являющейся границей этой полуплоскости.

a)
$$\begin{cases} (x-1)^2 + (y-1)^2 = 5, \Leftrightarrow \begin{cases} (x-1)^2 + (-2x-9)^2 = 5, \Leftrightarrow \begin{cases} 5x^2 + 34x + 82 = 0, \\ y = -2x - 8 \end{cases} \Leftrightarrow \begin{cases} y = -2x - 8. \end{cases}$$

$$\begin{cases} (x+1)^2 + (y+1)^2 = 5, \Leftrightarrow \begin{cases} (x+1)^2 + (-2x-7)^2 = 5, \Leftrightarrow \\ y = -2x - 8 \end{cases} \Leftrightarrow \begin{cases} 5x^2 + 30x + 45 = 0, \Leftrightarrow \\ y = -2x - 8. \end{cases} \Leftrightarrow \begin{cases} x = -3, \\ y = -2 \end{cases}$$

- При этом центры рассматриваемых окружностей точки (1;1) и (-1;-1) не лежат в полуплоскости, так как их координаты не удовлетворяют неравенству. Поэтому первая окружность не имеет общих точек с полуплоскостью, а вторая имеет единственную общую точку (-3;-2).
- **5.** На ребре SA правильной четырёхугольной пирамиды SABCD с вершиной S отмечена точка K такая, что AK:KS=1:4. Точка K является вершиной прямого кругового конуса, на окружности основания которого лежат три вершины пирамиды SABCD.
 - а) Найдите отношение DS:BC.
 - б) Пусть дополнительно известно, что высота пирамиды SABCD равна 5. Найдите объём конуса.

Ответ. a)
$$\frac{2}{\sqrt{3}}$$
, б) $V = \frac{64\pi}{\sqrt{15}}$

- **Решение.** Пусть точка H центр основания пирамиды. Рассмотрим треугольники AHK, BHK, CHK, DHK. У них сторона HK общая, а стороны AH, BH, CH, DH равны между собой. Поскольку углы BHK и DHK прямые, угол AHK острый, а угол CHK тупой, отсюда следует, что CK > BK = DK > AK.
- Так как точка K равноудалена от трёх вершин пирамиды, получаем, что BK = DK = SK. Значит, точки B, D и S лежат на окружности основания конуса.
- а) Рассмотрим треугольник ABS. Пусть AK = x, SK = 4x. Тогда BS = 5x, BK = 4x. Из равнобедренного треугольника BKS находим, что $\cos \angle ASB = \frac{BS}{2BK} = \frac{5}{8}$. Далее по теореме косинусов для треугольника ABS получаем, что $AB = \frac{5x\sqrt{3}}{2}$. Значит, $\frac{DS}{BC} = \frac{AS}{AB} = \frac{2}{\sqrt{3}}$.
- б) Высота конуса равна расстоянию от точки K до плоскости BSD. Так как KS:AS=4:5, то это расстояние равно $\frac{4}{5}$ расстояния от точки A до плоскости BSD, т.е $\frac{4}{5}AH=\frac{2\sqrt{2}}{5}AB=x\sqrt{6}$. Образующая конуса это отрезок KS=4x. Значит, радиус основания конуса равен $\sqrt{16x^2-6x^2}=x\sqrt{10}$. Тогда его объём $V=\frac{\pi}{3}\cdot 10x^2\cdot x\sqrt{6}=\frac{10\pi\sqrt{2}x^3}{\sqrt{3}}$.
- Из прямоугольного треугольника ASH по теореме Пифагора получаем $25x^2=\frac{75x^2}{8}+25$, откуда $x=\frac{2\sqrt{2}}{\sqrt{5}}$. Значит, $V=\frac{64\pi}{\sqrt{15}}$.
- **6.** Найдите все значения параметра b, для каждого из которых найдётся такое число a, что система

$$\begin{cases} y = b - x^2, \\ x^2 + y^2 + 2a^2 = 4 - 2a(x + y) \end{cases}$$

имеет хотя бы одно решение (x; y).

Ответ.
$$b \ge -2\sqrt{2} - \frac{1}{4}$$
.

- **Решение.** Второе уравнение системы может быть преобразовано к виду $(x+a)^2 + (y+a)^2 = 2^2$, следовательно, оно задаёт окружность радиуса 2 с центром (-a; -a). При всевозможных $a \in \mathbb{R}$ графики этих функций заметают полосу $x 2\sqrt{2} \le y \le x + 2\sqrt{2}$.
- Для выполнения условия задачи необходимо и достаточно, чтобы парабола, задаваемая первым уравнением, имела хотя бы одну общую точку с данной полосой.

- Найдём значение параметра b, при котором парабола касается нижней границы полосы, т.е. прямой $y=x-2\sqrt{2}$. Это означает, что уравнение $b-x^2=x-2\sqrt{2}$ имеет ровно одно решение, откуда $b=-2\sqrt{2}-\frac{1}{4}$. При этом ордината вершины параболы $y_0=-2\sqrt{2}-\frac{1}{4}$. Подходят все значения b, при которых $y_{\rm B}\geq y_0$, т.е. $b\geq -2\sqrt{2}-\frac{1}{4}$.
- 7. В углы C и B треугольника ABC вписаны соответственно окружности с центрами O_1 и O_2 равного радиуса, точка O центр окружности, вписанной в треугольник ABC. Данные окружности касаются стороны BC в точках K_1 , K_2 и K соответственно, при этом $CK_1 = 3$, $BK_2 = 7$, и BC = 16.
 - а) Найдите длину отрезка CK .
 - б) Пусть окружность с центром O_1 касается стороны AC в точке K_3 . Найдите угол ACB, если известно, что точка O_1 является центром окружности, описанной около треугольника OK_1K_3 .
- **Ответ.** a) $CK = \frac{24}{5}$, б) $\angle ACB = 2 \arcsin \frac{3}{5} = \arccos \frac{7}{25}$.
- **Решение.** а) Прямые CO_1 и BO_2 являются биссектрисами углов C и B треугольника, поэтому они пересекаются в точке O центре вписанной окружности. Обозначим радиусы окружностей с центрами O_1 и O_2 через r, а радиус вписанной окружности через R. Треугольники OKB и O_2K_2B подобны, коэффициент подобия равен $\frac{R}{r}$, поэтому $BK = \frac{7R}{r}$. Аналогично $CK = \frac{3R}{r}$, откуда $\frac{10R}{r} = 16$, $CK = \frac{24}{5}$.
- б) Из условия следует, что $O_1O = O_1K_1 = r$. Опустим из точки O_1 перпендикуляр O_1H на отрезок OK. Тогда $OH = R r = \frac{3}{5}r$, $\angle OCB = \angle OO_1H = \arcsin\frac{OH}{OO_1} = \arcsin\frac{3}{5}$. Значит, $\angle ACB = 2\arcsin\frac{3}{5} = \arccos\frac{7}{25}$.

1. Решите уравнение
$$x^{\log_5(0,008x)} = \frac{125}{x^5}$$
.

Ответ.
$$x = 5$$
, $x = \frac{1}{125}$.

Решение. Логарифмируя по основанию 5, получаем $\log_5 x \cdot \log_5 \left(\frac{x}{125}\right) = \log_5 125 - \log_5 x^3$, что равносильно следующему: $\log_5^2 x - 3\log_5 x = 3 - 5\log_5 x \Leftrightarrow \log_5^2 x + 2\log_5 x - 3 = 0$, откуда $\log_5 x = 1$ или $\log_5 x = -3$; x = 5 или $x = \frac{1}{125}$.

2. Решите уравнение $\frac{1}{2} \left| \cos 2x - \frac{1}{2} \right| = \cos^2 x + \cos x \cos 5x$.

Ответ.
$$x = \pm \frac{\pi}{6} + \frac{k\pi}{2}, k \in \mathbb{Z}$$
.

Решение. Преобразуем правую часть уравнения:

$$\cos^2 x + \cos x \cos 5x = \cos x (\cos x + \cos 5x) = \cos x \cdot 2 \cos 2x \cos 3x = \cos 2x \cdot (2 \cos x \cos 3x) = \cos 2x \cdot (\cos 2x + \cos 4x) = \cos 2x (\cos 2x + \cos 2x - 1) = \cos 2x (\cos 2x + 1) (2 \cos 2x - 1).$$

Обозначим $\cos 2x = t$. Тогда уравнение принимает вид $\frac{1}{4} \cdot |2t - 1| = t(t + 1)(2t - 1)$. Возможны три случая.

- а) $t = \frac{1}{2}$ является корнем уравнения.
- б) $t > \frac{1}{2}$. Получаем $\frac{1}{4} = t^2 + t$, $t^2 + t \frac{1}{4} = 0$, $t = \frac{-1 \pm \sqrt{2}}{2}$. Оба корня не удовлетворяют условию $t > \frac{1}{2}$, поэтому они не подходят.

в)
$$t < \frac{1}{2}$$
. Получаем $-\frac{1}{4} = t^2 + t$, $t^2 + t + \frac{1}{4} = 0$, $t = -\frac{1}{2}$.

Итого:
$$t = \pm \frac{1}{2}$$
, $\cos 2x = \pm \frac{1}{2}$, $2x = \pm \frac{\pi}{3} + k\pi$, $x = \pm \frac{\pi}{6} + \frac{k\pi}{2}$, $k \in \mathbb{Z}$.

3. Найдите количество натуральных чисел k, не превосходящих 454500 и таких, что $k^2 - k$ делится нацело на 505. **Ответ.** 3600 .

Решение. Разложив делимое и делитель на множители, получаем условие k(k-1): $(5 \cdot 101)$. Значит, одно из чисел k или (k-1) делится на 101. Рассмотрим два случая.

- а) k:101, т.е. k=101p, $p\in Z$. Тогда получаем $101p(101p-1):(5\cdot 101)\Leftrightarrow p(101p-1):5$. Первый множитель делится на 5 при p=5q, $q\in Z$, а второй при p=5q+1, $q\in Z$, откуда получаем, что k=505q, k=505q+101, $q\in Z$.
- б) (k-1):101, т.е. $k=101p+1, p\in Z$. Тогда получаем (101p+1)101p: $(5\cdot101)\Leftrightarrow (101p+1)p$:5. Первый множитель делится на 5 при $p=5q+4, q\in Z$, а второй при $p=5q, q\in Z$, откуда получаем, что k=505q+405, k=505q+1, $q\in Z$.

Итак, условию задачи удовлетворяют числа, дающие остатки 0,101,405,1 при делении на 505, то есть подходят каждые 4 из 505 подряд идущих чисел. Так как $454500 = 505 \cdot 900$, получаем $4 \cdot 900 = 3600$ чисел.

4. Решите систему
$$\begin{cases} x + 3y + 14 \le 0, \\ x^4 + 2x^2y^2 + y^4 + 64 - 20x^2 - 20y^2 = 8xy. \end{cases}$$

Ответ.
$$(-2; -4)$$
.

Решение. Преобразуем уравнение системы (добавляем к обеим частям $4x^2 + 4y^2$):

$$(x^{2} + y^{2})^{2} + 64 - 16x^{2} - 16y^{2} = 4x^{2} + 4y^{2} + 8xy \Leftrightarrow (x^{2} + y^{2} - 8)^{2} = (2x + 2y)^{2} \Leftrightarrow \begin{cases} x^{2} + y^{2} - 8 = 2x + 2y, \\ x^{2} + y^{2} - 8 = -2x - 2y \end{cases} \Leftrightarrow \begin{bmatrix} (x - 1)^{2} + (y - 1)^{2} = 10, \\ (x + 1)^{2} + (y + 1)^{2} = 10. \end{cases}$$

Получаем две окружности радиуса $\sqrt{10}$ с центрами в точках (1;1) и (-1;-1).

Неравенство системы задаёт полуплоскость. Рассмотрим взаимное расположение каждой из окружностей с прямой x = -3y - 14, являющейся границей этой полуплоскости.

a)
$$\begin{cases} (x-1)^2 + (y-1)^2 = 10, \Leftrightarrow \begin{cases} (-3y-15)^2 + (y-1)^2 = 10, \Leftrightarrow \begin{cases} 10y^2 + 88x + 216 = 0, \Leftrightarrow \emptyset \\ x = -3y - 14 \end{cases} \Leftrightarrow \begin{cases} x = -3y - 14 \end{cases}$$

6)
$$\begin{cases} (x+1)^2 + (y+1)^2 = 10, \\ x = -3y - 14 \end{cases} \Leftrightarrow \begin{cases} (-3y-13)^2 + (y+1)^2 = 10, \\ x = -3y - 14 \end{cases} \Leftrightarrow \begin{cases} 10y^2 + 80y + 160 = 0, \\ x = -3y - 14 \end{cases} \Leftrightarrow \begin{cases} y = -4, \\ x = -2. \end{cases}$$

При этом центры рассматриваемых окружностей – точки (1;1) и (-1;-1) – не лежат в полуплоскости, так как их координаты не удовлетворяют неравенству. Поэтому первая окружность не имеет общих точек с полуплоскостью, а вторая имеет единственную общую точку (-2;-4).

- **5.** На ребре SC правильной четырёхугольной пирамиды SABCD с вершиной S отмечена точка L такая, что CL:LS=1:5. Точка L является вершиной прямого кругового конуса, на окружности основания которого лежат три вершины пирамиды SABCD.
 - а) Найдите отношение AS:AB.
 - б) Пусть дополнительно известно, что высота пирамиды SABCD равна 6. Найдите объём конуса.

Ответ. a)
$$\frac{\sqrt{5}}{2}$$
, б) $V = \frac{125\pi\sqrt{2}}{3\sqrt{3}}$.

Решение. Пусть точка H — центр основания пирамиды. Рассмотрим треугольники AHL, BHL, CHL, DHL. У них сторона HL общая, а стороны AH, BH, CH, DH равны между собой. Поскольку углы BHL и DHL прямые, угол CHL острый, а угол AHL тупой, отсюда следует, что AL > BL = DL > CL.

Так как точка L равноудалена от трёх вершин пирамиды, получаем, что BL = DL = SL. Значит, точки B, D и S лежат на окружности основания конуса.

- а) Рассмотрим треугольник *CBS*. Пусть CL = x, SL = 5x. Тогда BL = 5x, BS = 6x. Из равнобедренного треугольника *BLS* находим, что $\cos \angle LSB = \frac{BS}{2SL} = \frac{3}{5}$. Далее по теореме косинусов для треугольника *CBS* получаем, что $BC = \frac{12x}{\sqrt{5}}$. Значит, $\frac{AS}{AB} = \frac{BS}{BC} = \frac{\sqrt{5}}{2}$.
- б) Высота конуса равна расстоянию от точки L до плоскости BSD. Так как LS:CS=5:6, то это расстояние равно $\frac{5}{6}$ расстояния от точки C до плоскости BSD, т.е $\frac{5}{6}CH=\frac{5}{6\sqrt{2}}BC=x\sqrt{10}$. Образующая конуса это отрезок LS=5x. Значит, радиус основания конуса равен $\sqrt{25x^2-10x^2}=x\sqrt{15}$. Тогда его объём $V=\frac{\pi}{3}\cdot 15x^2\cdot x\sqrt{10}=5\pi\sqrt{10}x^3$.

Из прямоугольного треугольника CSH по теореме Пифагора получаем $36x^2=\frac{72x^2}{5}+36$, откуда $x=\sqrt{\frac{5}{3}}$. Значит, $V=\frac{125\pi\sqrt{2}}{3\sqrt{3}}$.

6. Найдите все значения параметра a, для каждого из которых найдётся такое число b, что система

$$\begin{cases} y = x^2 + a, \\ x^2 + y^2 + 2b^2 = 2b(x - y) + 1 \end{cases}$$

имеет хотя бы одно решение (x; y).

Ответ.
$$a \le \sqrt{2} + \frac{1}{4}$$
.

Решение. Второе уравнение системы может быть преобразовано к виду $(x-b)^2 + (y+b)^2 = 1^2$, следовательно, оно задаёт окружность радиуса 1 с центром (b;-b). При всевозможных $b \in \mathbb{R}$ графики этих функций заметают полосу $-x-\sqrt{2} \le y \le -x+\sqrt{2}$.

Для выполнения условия задачи необходимо и достаточно, чтобы парабола, задаваемая первым уравнением, имела хотя бы одну общую точку с данной полосой.

- Найдём значение параметра a, при котором парабола касается верхней границы полосы, т.е. прямой $y=-x+\sqrt{2}$. Это означает, что уравнение $x^2+a=-x+\sqrt{2}$ имеет ровно одно решение, откуда $a=\sqrt{2}+\frac{1}{4}$. При этом ордината вершины параболы $y_0=\sqrt{2}+\frac{1}{4}$. Подходят все значения a, при которых $y_{\rm B}\leq y_0$, т.е. $a\leq \sqrt{2}+\frac{1}{4}$.
- 7. В углы C и A треугольника ABC вписаны соответственно окружности с центрами O_1 и O_2 равного радиуса, точка O центр окружности, вписанной в треугольник ABC. Данные окружности касаются стороны AC в точках K_1 , K_2 и K соответственно, при этом $CK_1 = 6$, $AK_2 = 8$, и AC = 21.
 - а) Найдите длину отрезка CK .
 - б) Пусть окружность с центром O_1 касается стороны BC в точке K_3 . Найдите угол BCA, если известно, что точка O_1 является центром окружности, описанной около треугольника OK_1K_3 .

Ответ. a) CK = 9, б) $\angle ACB = 60^{\circ}$.

- **Решение.** а) Прямые CO_1 и AO_2 являются биссектрисами углов C и A треугольника, поэтому они пересекаются в точке O центре вписанной окружности. Обозначим радиусы окружностей с центрами O_1 и O_2 через r, а радиус вписанной окружности через R. Треугольники OKA и O_2K_2A подобны, коэффициент подобия равен $\frac{R}{r}$, поэтому $AK = \frac{8R}{r}$. Аналогично $CK = \frac{6R}{r}$, откуда $\frac{14R}{r} = 21$, CK = 9.
- б) Из условия следует, что $O_1O = O_1K_1 = r$. Опустим из точки O_1 перпендикуляр O_1H на отрезок OK. Тогда $OH = R r = \frac{1}{2}r$, $\angle OCB = \angle OO_1H = \arcsin\frac{OH}{OO_1} = \arcsin\frac{1}{2} = 30^\circ$. Значит, $\angle ACB = 2 \cdot 30^\circ = 60^\circ$.

11 класс, билеты 11-14

Задача считается полностью решённой (и за неё начисляется максимально возможное количество баллов), только если в тексте решения приведены все необходимые преобразования и полностью объяснены все имеющиеся логические шаги, при этом полученные ответы приведены к упрощённому виду.

Наличие верного ответа не гарантирует выставление положительного балла за задачу.

1.(4) Уравнение приведено к квадратному относительно логарифма по постоянному основан	ию+ 2 балла .
2.(7) Получено алгебраическое уравнение относительно $\cos 2x$	+3 балла;
решено алгебраическое уравнение относительно $\cos 2x$	
 при этом не сделан (неверно сделан) отбор корней	
 при этом потерян случай обращения в ноль подмодульного выражение	алл вместо 3 баллов;
решены элементарные тригонометрические уравнения	+1 балл.
3.(6) Задача сведена к исследованию четырёх случаев	+1 балл;
верно рассмотрен ровно один случай	
верно рассмотрены ровно два случая	
верно рассмотрены ровно три случая	+3 балла;
верно рассмотрены все четыре случая	+5 баллов;
случай обращения в ноль делимого не учтён при подсчёте	аллы не снимаются.
4.(9) Второе уравнение системы разложено на множители	+5 баллов;
За каждый верно разобранный случай	
5.(9) Обосновано, какие вершины пирамиды лежат на окружности основания конуса найдено отношение бокового ребра к стороне основания найден объём конуса	+3 балла;
6.(8) Построено множество точек, удовлетворяющих второму уравнению системы фиксированном значении параметра построена полоса между двумя параллельными прямыми, представляющая собой объед задаваемых вторым уравнением при всевозможных действительных значениях параметра задача обоснованно сведена к следующей: "парабола, задаваемая первым уравнением, имеет точку с этой полосой"	+1 балл; инение окружностей, +1 балл; хотя бы одну общую
7.(7) Решён пункт а)	+4 балла;

Итого – 50 баллов.