МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

ОЛИМПИАДА "ФИЗТЕХ" ПО МАТЕМАТИКЕ

9 класс

БИЛЕТ 9	ШИФР	
		Заполняется ответственным секретарём

- 1. Дана линейная функция f(x). Известно, что расстояние между точками пересечения графиков $y=x^2$ и y=f(x) равно $\sqrt{10}$, а расстояние между точками пересечения графиков $y=x^2-1$ и y=f(x)+1 равно $\sqrt{42}$. Найдите расстояние между точками пересечения графиков функций $y=x^2+1$ и y=f(x)+2.
- 2. Решите систему уравнений

$$\begin{cases} 2x + y + 2xy = 11, \\ 2x^2y + xy^2 = 15. \end{cases}$$

- 3. Хорды AB и CD окружности центром O имеют длину 10. Продолжения отрезков BA и CD соответственно за точки A и D пересекаются в точке P, причем DP=3. Прямая PO пересекает отрезок AC в точке L. Найдите отношение AL:LC.
- 4. Есть 306 различных карточек с числами 3, 19, 3^2 , 19^2 , ..., 3^{153} , 19^{153} (на каждой карточке написано ровно одно число, каждое число встречается ровно один раз). Сколькими способами можно выбрать 2 карточки так, чтобы произведение чисел на выбранных карточках было квадратом целого числа?
- 5. В окружность Ω радиуса 10 вписаны трапеция $ABCD~(AD \parallel BC)$ и прямоугольник $A_1B_1C_1D_1$ таким образом, что $AC \parallel B_1D_1$, $BD \parallel A_1C_1$. Найдите отношение площадей ABCD и $A_1B_1C_1D_1$, если известно, что AD=16,~BC=12.
- 6. При каких значениях параметра a среди решений неравенства $(x^2 ax x + a)\sqrt{x+5} \leqslant 0$ найдутся два решения, разность между которыми равна 4?
- 7. На координатной плоскости рассматривается фигура M, состоящая из всех точек, координаты (x;y) которых удовлетворяют системе неравенств

$$\begin{cases} x - y \geqslant |x + y|, \\ \frac{x^2 - 6x + y^2 - 8y}{3y - x + 6} \geqslant 0. \end{cases}$$

Изобразите фигуру M и найдите ее площадь.

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

ОЛИМПИАДА "ФИЗТЕХ" ПО МАТЕМАТИКЕ

9 класс

 БИЛЕТ 10
 ШИФР

 Заполняется ответственным секретарём

- 1. Дана линейная функция f(x). Известно, что расстояние между точками пересечения графиков $y = x^2$ и y = f(x) равно $2\sqrt{3}$, а расстояние между точками пересечения графиков $y = x^2 2$ и y = f(x) + 1 равно $\sqrt{60}$. Найдите расстояние между точками пересечения графиков функций $y = x^2 1$ и y = f(x) + 1.
- 2. Решите систему уравнений

$$\begin{cases} x + 3y + 3xy = -1, \\ x^2y + 3xy^2 = -4. \end{cases}$$

- 3. Хорды AB и CD окружности центром O имеют длину 5. Продолжения отрезков BA и CD соответственно за точки A и D пересекаются в точке P, причем DP=13. Прямая PO пересекает отрезок AC в точке L. Найдите отношение AL:LC.
- 4. Есть 294 различные карточки с числами 7, 11, 7^2 , 11^2 , ..., 7^{147} , 11^{147} (на каждой карточке написано ровно одно число, каждое число встречается ровно один раз). Сколькими способами можно выбрать 2 карточки так, чтобы произведение чисел на выбранных карточках было квадратом целого числа?
- 5. В окружность Ω радиуса 13 вписаны трапеция $ABCD~(AD \parallel BC)$ и прямоугольник $A_1B_1C_1D_1$ таким образом, что $AC \parallel B_1D_1$, $BD \parallel A_1C_1$. Найдите отношение площадей ABCD и $A_1B_1C_1D_1$, если известно, что AD=24,~BC=10.
- 6. При каких значениях параметра a среди решений неравенства $(x^2 ax + 2x 2a)\sqrt{5-x} \leqslant 0$ найдутся два решения, разность между которыми равна 5?
- 7. На координатной плоскости рассматривается фигура M, состоящая из всех точек, координаты (x;y) которых удовлетворяют системе неравенств

$$\begin{cases} y + x \geqslant |x - y|, \\ \frac{x^2 - 8x + y^2 + 6y}{x + 2y - 8} \leqslant 0. \end{cases}$$

Изобразите фигуру M и найдите ее площадь.

Билет 9

1. Дана линейная функция f(x). Известно, что расстояние между точками пересечения графиков $y=x^2$ и y=f(x) равно $\sqrt{10}$, а расстояние между точками пересечения графиков $y=x^2-1$ и y=f(x)+1 равно $\sqrt{42}$. Найдите расстояние между точками пересечения графиков функций $y=x^2+1$ и y=f(x)+2.

Ответ: $\sqrt{26}$.

Решение. Пусть f(x) = ax + b. Тогда абсциссы точек пересечения графиков в первом случае определяются из уравнения $x^2 = ax + b$, а во втором случае – из уравнения $x^2 - 1 = ax + b + 1$.

Рассмотрим первый случай подробнее. Уравнение имеет вид $x^2-ax-b=0$, откуда $x_{1,2}=\frac{a\pm\sqrt{a^2+4b}}{2}$, $|x_2-x_1|=\sqrt{a^2+4b}$. Так как точки пересечения графиков лежат на прямой с угловым коэффициентом a, расстояние между точками в $\sqrt{a^2+1}$ раз больше, чем $|x_2-x_1|$. Значит, расстояние между точками равно $\sqrt{(a^2+1)(a^2+4b)}$. Аналогично находим, что во втором случае расстояние между точками равно

$$\sqrt{(a^2+1)(a^2+4b+8)}$$
. Из условия получаем систему уравнений $\begin{cases} (a^2+1)(a^2+4b) = 10, \\ (a^2+1)(a^2+4b+8) = 42, \end{cases}$ решая

которую, находим, что $a^2 = 3, b = -\frac{1}{8}$.

Найдём искомое расстояние. Абсциссы точек пересечения определяются уравнением $x^2 - ax - b - 1 = 0$, поэтому $|x_2 - x_1| = \sqrt{a^2 + 4b + 4} = \sqrt{6,5}$, а расстояние между самими точками пересечения есть $|x_2 - x_1| \sqrt{a^2 + 1} = \sqrt{6,5}2 = \sqrt{26}$.

2. Решите систему уравнений $\begin{cases} 2x + y + 2xy = 11, \\ 2x^2y + xy^2 = 15. \end{cases}$

Ответ: $(\frac{1}{2}; 5), (1; 3), (\frac{3}{2}; 2), (\frac{5}{2}; 1).$

Решение. Сделаем замену 2x + y = u, xy = w. Тогда система принимает вид

$$\begin{cases} u + 2w = 11, \\ uw = 15 \end{cases} \Leftrightarrow \begin{cases} u = 11 - 2w, \\ w(11 - 2w) = 15 \end{cases} \Leftrightarrow \begin{cases} u = 11 - 2w, \\ 2w^2 - 11w + 15 = 0. \end{cases}$$

Из второго уравнения последней системы находим, что w=3 (и тогда u=5) или $w=\frac{5}{2}$ (и тогда u=6). Возвращаемся к исходным переменным.

Если
$$u=6, w=\frac{5}{2}$$
, то $\begin{cases} 2x+y=6, \\ xy=\frac{5}{2} \end{cases} \Leftrightarrow \begin{cases} y=6-2x, \\ x^2-3x+\frac{5}{4}=0. \end{cases}$ Значит, $x=\frac{5}{2}$ (при этом $y=1$) или $x=\frac{1}{2}$ (при этом $y=5$).

Если
$$u=5, w=3$$
, то $\begin{cases} 2x+y=5, \\ xy=3 \end{cases} \Leftrightarrow \begin{cases} y=5-2x, \\ 2x^2-5x+3=0. \end{cases}$ Значит, $x=\frac{3}{2}$ (при этом $y=2$) или $x=1$ (при этом $y=3$).

3. Хорды AB и CD окружности центром O имеют длину 10. Продолжения отрезков BA и CD соответственно за точки A и D пересекаются в точке P, причем DP=3. Прямая PO пересекает отрезок AC в точке L. Найдите отношение AL:LC.

Ответ: AL : LC = 3 : 13.

Решение. Опустим из точки O перпендикуляры OH и ON на хорды CD и AB соответственно. Так как эти хорды равны, то и расстояния от центра окружности до них равны, поэтому OH = ON. Прямоугольные треугольники OPN и OPH равны по катету и гипотенузе (OP - общая), поэтому PN = PH, $\angle OPN = \angle OPH$ (последнее означает, что PO - биссектриса угла BPC). Так как диаметр, перпендикулярный хорде, делит её пополам, точки H и N являются серединами CD и AB соответственно; отсюда следует, что AN = DH и поэтому AP = DP = 3. Так как PL - биссектриса треугольника APC, получаем, что $\frac{AL}{LC} = \frac{PA}{PC} = \frac{PA}{PD + DC} = \frac{3}{13}$.

4. Есть 306 различных карточек с числами 3, 19, 3^2 , 19^2 ,..., 3^{153} , 19^{153} (на каждой карточке написано ровно одно число, каждое число встречается ровно один раз). Сколькими способами можно выбрать 2 карточки так, чтобы произведение чисел на выбранных карточках было квадратом целого числа?

Ответ: 17 328.

Решение. Чтобы получить квадрат натурального числа, необходимо и достаточно, чтобы каждый множитель входил в разложение числа на простые множители в чётной степени.

Допустим, выбраны две карточки со степенями тройки. У нас есть 76 чётных показателей $(2,4,6,\ldots,152)$ и 77 нечётных показателей $(1,3,5,\ldots,153)$. Нам нужно, чтобы сумма показателей оказалась чётной. Чтобы сумма двух натуральных чисел оказалась чётной, мы можем либо выбрать два чётных числа $(C_{76}^2 = \frac{76.75}{2} = 2850\,\mathrm{способов})$, либо два нечётных числа $(C_{77}^2 = \frac{77.76}{2} = 2926\,\mathrm{способов})$. Получаем $2850 + 2926 = 5776\,\mathrm{способов}$.

Количество способов, когда на обеих выбранных карточках написаны степени числа 19, точно такое же, т.е. 5776.

Если взята одна карточка со степенью тройки и одна карточка со степенью числа 19, то оба показателя должны быть чётными — получаем $76 \cdot 76 = 5776$ способов.

Итого: $5776 \cdot 3 = 17328$ способов.

5. В окружность Ω радиуса 10 вписаны трапеция ABCD ($AD \parallel BC$) и прямоугольник $A_1B_1C_1D_1$ таким образом, что $AC \parallel B_1D_1$, $BD \parallel A_1C_1$. Найдите отношение площадей ABCD и $A_1B_1C_1D_1$, если известно, что AD = 16, BC = 12.

Ответ: $\frac{49}{50}$ или $\frac{1}{2}$.

Решение. Проведём через центр окружности O прямую, перпендикулярную основаниям трапеции. Пусть она пересекает AD и BC в точках N и M соответственно. Так как диаметр, перпендикулярный хорде, делит эту хорду пополам, BM = MC = 6, AN = ND = 8. По теореме Пифагора из треугольников OND и OMC находим, что $ON = \sqrt{OD^2 - DN^2} = 6$, $OM = \sqrt{OC^2 - MC^2} = 8$. Возможны два случая.

- 1) Точка O не лежит на отрезке MN. Тогда высота трапеции есть MN = OM ON = 2. Пусть H основание перпендикуляра, опущенного из вершины B на основание AD. Так как трапеция, вписанная в окружность, равнобедренная, $DH = \frac{AD + BC}{2} = 14$. Тогда $BD = \sqrt{DH^2 + BH^2} = \sqrt{200} = 10\sqrt{2}$. Площадь любого четырёхугольника равна полупроизведению диагоналей, умноженному на синус угла между ними. В силу того, что диагонали прямоугольника $A_1B_1C_1D_1$ параллельны диагоналям трапеции ABCD, угол между ними равен углу между диагоналями трапеции. Обозначим этот угол через ψ . Кроме того диагонали прямоугольника, вписанного в окружность, являются его диаметрами, поэтому $A_1C_1 = B_1D_1 = 20$. Тогда $S_{ABCD} = \frac{1}{2}AC \cdot BD\sin\psi = 100\sin\psi$; $S_{A_1B_1C_1D_1} = \frac{1}{2}A_1C_1 \cdot B_1D_1\sin\psi = \frac{1}{2}\cdot 20\cdot 20\sin\psi = 200\sin\psi$. Значит, отношение площадей равно $\frac{100\sin\psi}{200\sin\psi} = \frac{1}{2}$.
- 2) Точка O лежит на отрезке MN. Тогда MN = ON + OM = 14. Аналогично первому случаю находим, что DH = 14, $BD = \sqrt{DH^2 + BH^2} = 14\sqrt{2}$, $S_{ABCD} = \frac{1}{2}AC \cdot BD \sin \varphi = 196 \sin \varphi$; $S_{A_1B_1C_1D_1} = \frac{1}{2}A_1C_1 \cdot B_1D_1 \sin \varphi = \frac{1}{2} \cdot 20 \cdot 20 \sin \varphi = 200 \sin \varphi$, где φ угол между диагоналями трапеции. Отсюда отношение площадей есть $\frac{196 \sin \varphi}{200 \sin \varphi} = \frac{49}{50}$.
- 6. При каких значениях параметра a среди решений неравенства $(x^2 ax x + a)\sqrt{x+5} \le 0$ найдутся два решения, разность между которыми равна 4?

Other: $a \in (-\infty; -1] \cup [5; +\infty)$.

Решение. ОДЗ неравенства определяется условием $x \ge -5$. Раскладывая квадратный трёхчлен в скобках на множители (например, методом группировки), получаем $(x-1)(x-a)\sqrt{x+5} \le 0$. Будем решать это неравенство методом интервалов. Для того, чтобы расположить точки, в которых левая часть неравенства обращается в ноль, на числовой прямой, необходимо рассмотреть несколько случаев.

- 1) a < -5. Тогда множитель (x a) положителен на ОДЗ, и его можно не рассматривать. Получаем $(x 1)\sqrt{x + 5} \le 0$, $x \in [-5; 1]$. Очевидно, на этом промежутке есть точки, находящиеся на расстоянии 4 друг от друга (например, x = -4 и x = 0). Все значения a < -5 удовлетворяют условию задачи.
- 2) a = -5. Неравенство принимает вид $(x 1)(x + 5)\sqrt{x + 5} \le 0$, что равносильно неравенству, полученному в предыдущем случае. Значит, a = -5 подходит.

- 3) -5 < a < 1. Тогда получаем $x \in \{-5\} \cup [a;1]$. Если $a \le -1$, то в этом множестве есть точки на расстоянии 4 друг от друга (x=-1 и x=-5); если a > -1, то таких точек нет. Значит, в этом случае подходят значения $a \in (-5;-1]$.
- 4) a=1. Неравенство принимает вид $(x-1)^2\sqrt{x+5}\leqslant 0$ и выполняется только при x=-5 и x=1. Этот случай не подходит.
- 5) a > 1. Тогда $x \in \{-5\} \cup [1; a]$, и решения на расстоянии, равном 4, есть при $a \geqslant 5$.

Объединяя результаты всех рассмотренных случаев, получаем $a \in (-\infty; -1] \cup [5; +\infty)$.

7. На координатной плоскости рассматривается фигура M, состоящая из всех точек, координаты (x;y) которых удовлетворяют системе неравенств

$$\begin{cases} x - y \geqslant |x + y|, \\ \frac{x^2 - 6x + y^2 - 8y}{3y - x + 6} \geqslant 0. \end{cases}$$

Изобразите фигуру M и найдите ее площадь.

Ответ: 3.

Решение. Первое неравенство равносильно¹ системе $\begin{cases} x+y\leqslant x-y,\\ x+y\geqslant y-x \end{cases} \Leftrightarrow \begin{cases} y\leqslant 0,\\ x\geqslant 0. \end{cases}.$

Рассмотрим второе неравенство. Его можно записать в виде $\frac{(x-3)^2+(y-4)^2-25}{3y-x+6}\geqslant 0$. Числитель дроби в левой части неравенства обращается в 0 на окружности радиуса 5 с центром в точке Q(3;4) (назовём её ω). Знаменатель дроби равен нулю на прямой $y=-2+\frac{x}{3}$ (назовём её ℓ). Точки пересечения окружности и прямой определяются из системы уравнений

$$\begin{cases} x = 3y + 6, \\ x^2 - 6x + y^2 - 8y = 0 \end{cases} \Leftrightarrow \begin{cases} x = 3y + 6, \\ (3y + 6)^2 - 6(3y + 6) + y^2 - 8y = 0 \end{cases} \Leftrightarrow \begin{cases} x = 3y + 6, \\ y^2 + y = 0, \end{cases}$$

откуда получаем две точки A(3;-1) и B(6;0). Обозначим также начало координат через O, а точку пересечения прямой ℓ с осью Oy через C (несложно определить, что координаты точки C – это (0;-2)).

Неравенство выполняется:

- во всех точках окружности ω кроме точек A и B (тогда числитель дроби равен нулю);
- внутри окружности ω в точках, расположенных ниже прямой ℓ (числитель и знаменатель отрицательны);
- вне окружности ω в точках, расположенных выше прямой ℓ (числитель и знаменатель положительны).

Опишем множество точек M, которые удовлетворяют исходной системе неравенств. Оно состоит из сегмента окружности, ограниченного хордой AB и находящегося снизу от этой хорды, а также криволинейного треугольника AOC, границами которого являются дуга AO окружности ω и отрезки AC и CO (при этом точки прямой ℓ множеству не принадлежат, а остальные точки границы – принадлежат).

Заметим, что в силу симметрии сегмент окружности, расположенный ниже хорды AB, равен сегменту окружности, расположенному ниже хорды AO. Значит, площадь фигуры M равна площади треугольника ACO, т.е. $\frac{1}{2} \cdot 3 \cdot 2 = 3$.

 $[|]A| \le B \Leftrightarrow \begin{cases} A \le B, \\ A \geqslant -B. \end{cases}$

Билет 10

1. Дана линейная функция f(x). Известно, что расстояние между точками пересечения графиков $y=x^2$ и y=f(x) равно $2\sqrt{3}$, а расстояние между точками пересечения графиков $y=x^2-2$ и y=f(x)+1 равно $\sqrt{60}$. Найдите расстояние между точками пересечения графиков функций $y=x^2-1$ и y=f(x)+1.

Ответ: $2\sqrt{11}$.

Решение. Пусть f(x) = ax + b. Тогда абсциссы точек пересечения графиков в первом случае определяются из уравнения $x^2 = ax + b$, а во втором случае – из уравнения $x^2 - 2 = ax + b + 1$.

Рассмотрим первый случай подробнее. Уравнение имеет вид $x^2 - ax - b = 0$, откуда $x_{1,2} = \frac{a \pm \sqrt{a^2 + 4b}}{2}$, $|x_2 - x_1| = \sqrt{a^2 + 4b}$. Так как точки пересечения графиков лежат на прямой с угловым коэффициентом a, расстояние между точками в $\sqrt{a^2 + 1}$ раз больше, чем $|x_2 - x_1|$. Значит, расстояние между точками равно $\sqrt{(a^2 + 1)(a^2 + 4b)}$. Аналогично находим, что во втором случае расстояние между точками рав-

но
$$\sqrt{(a^2+1)(a^2+4b+12)}$$
. Из условия получаем систему уравнений $\begin{cases} (a^2+1)(a^2+4b)=12, \\ (a^2+1)(a^2+4b+12)=60, \end{cases}$

решая которую, находим, что $a^2 = 3$, b = 0.

Найдём искомое расстояние. Абсциссы точек пересечения определяются уравнением $x^2 - ax - b - 2 = 0$, поэтому $|x_2 - x_1| = \sqrt{a^2 + 4b + 8} = \sqrt{11}$, а расстояние между самими точками пересечения есть $|x_2 - x_1| \sqrt{a^2 + 1} = \sqrt{11} \cdot 2 = 2\sqrt{11}$.

2. Решите систему уравнений

$$\begin{cases} x + 3y + 3xy = -1, \\ x^2y + 3xy^2 = -4. \end{cases}$$

Ответ: $\left(-3; -\frac{1}{3}\right), (-1; -1), \left(-1; \frac{4}{3}\right), \left(4; -\frac{1}{3}\right).$

Решение. Сделаем замену x + 3y = u, xy = w. Тогда система принимает вид

$$\begin{cases} u + 3w = -1, \\ uw = -4 \end{cases} \Leftrightarrow \begin{cases} u = -1 - 3w, \\ -w(1 + 3w) = -4 \end{cases} \Leftrightarrow \begin{cases} u = -1 - 3w, \\ 3w^2 + w - 4 = 0. \end{cases}$$

Из второго уравнения последней системы находим, что w=1 (и тогда u=-4) или $w=-\frac{4}{3}$ (и тогда u=3). Возвращаемся к исходным переменным.

Если
$$u=3,\ w=-\frac{4}{3},\ \text{то}\ \begin{cases} x+3y=3,\\ xy=-\frac{4}{3} \end{cases} \Leftrightarrow \begin{cases} x=3-3y,\\ y^2-y-\frac{4}{9}=0. \end{cases}$$
 Значит, $y=\frac{4}{3}$ (при этом $x=-1$) или $y=-\frac{1}{3}$ (при этом $x=4$).

Если
$$u=-4,\ w=1,\ {\rm To}\ \begin{cases} x+3y=-4,\\ xy=1 \end{cases} \Leftrightarrow \begin{cases} x=-4-3y,\\ 3y^2+4y+1=0. \end{cases}$$
 Значит, $y=-\frac{1}{3}$ (при этом $x=-3$) или $y=-1$ (при этом $x=-1$).

3. Хорды AB и CD окружности центром O имеют длину 5. Продолжения отрезков BA и CD соответственно за точки A и D пересекаются в точке P, причем DP=13. Прямая PO пересекает отрезок AC в точке L. Найдите отношение AL:LC.

Ответ: AL : LC = 13 : 18.

Решение. Опустим из точки O перпендикуляры OH и ON на хорды CD и AB соответственно. Так как эти хорды равны, то и расстояния от центра окружности до них равны, поэтому OH = ON. Прямо-угольные треугольники OPN и OPH равны по катету и гипотенузе (OP - общая), поэтому PN = PH, $\angle OPN = \angle OPH$ (последнее означает, что PO - биссектриса угла BPC). Так как диаметр, перпендикулярный хорде, делит её пополам, точки H и N являются серединами CD и AB соответственно; отсюда следует, что AN = DH и поэтому AP = DP = 13. Так как PL - биссектриса треугольника APC, получаем, что $\frac{AL}{LC} = \frac{PA}{PC} = \frac{PA}{PD + DC} = \frac{13}{18}$.

4. Есть 294 различные карточки с числами $7, 11, 7^2, 11^2, \dots, 7^{147}, 11^{147}$ (на каждой карточке написано ровно одно число, каждое число встречается ровно один раз). Сколькими способами можно выбрать 2 карточки так, чтобы произведение чисел на выбранных карточках было квадратом целого числа?

Ответ: 15 987.

Решение. Чтобы получить квадрат натурального числа, необходимо и достаточно, чтобы каждый множитель входил в разложение числа на простые множители в чётной степени.

Допустим, выбраны две карточки со степенями семёрки. У нас есть 73 чётных показателя $(2,4,6,\ldots,146)$ и 74 нечётных показателя $(1,3,5,\ldots,147)$. Нам нужно, чтобы сумма показателей оказалась чётной. Чтобы сумма двух натуральных чисел оказалась чётной, мы можем либо выбрать два чётных числа $(C_{73}^2 = \frac{73\cdot72}{2} = 2628\,\mathrm{способов})$, либо два нечётных числа $(C_{74}^2 = \frac{74\cdot73}{2} = 2701\,\mathrm{способов})$. Получаем $2628+2701=5329\,\mathrm{способов}$.

Количество способов, когда на обеих выбранных карточках написаны степени числа 11, точно такое же, т.е. 5329.

Если взята одна карточка со степенью семёрки и одна карточка со степенью числа 11, то оба показателя должны быть чётными – получаем $73 \cdot 73 = 5329$ способов.

Итого: $5329 \cdot 3 = 15987$ способов.

5. В окружность Ω радиуса 13 вписаны трапеция $ABCD~(AD \parallel BC)$ и прямоугольник $A_1B_1C_1D_1$ таким образом, что $AC \parallel B_1D_1$, $BD \parallel A_1C_1$. Найдите отношение площадей ABCD и $A_1B_1C_1D_1$, если известно, что AD=24,~BC=10.

Ответ: $\frac{289}{338}$ или $\frac{1}{2}$.

Решение. Проведём через центр окружности O прямую, перпендикулярную основаниям трапеции. Пусть она пересекает AD и BC в точках N и M соответственно. Так как диаметр, перпендикулярный хорде, делит эту хорду пополам, BM = MC = 5, AN = ND = 12. По теореме Пифагора из треугольников OND и OMC находим, что $ON = \sqrt{OD^2 - DN^2} = 5$, $OM = \sqrt{OC^2 - MC^2} = 12$. Возможны два случая.

- 1) Точка O не лежит на отрезке MN. Тогда высота трапеции есть MN = OM ON = 7. Пусть H основание перпендикуляра, опущенного из вершины B на основание AD. Так как трапеция, вписанная в окружность, равнобедренная, $DH = \frac{AD + BC}{2} = 17$. Тогда $BD = \sqrt{DH^2 + BH^2} = \sqrt{338} = 13\sqrt{2}$. Площадь любого четырёхугольника равна полупроизведению диагоналей, умноженному на синус угла между ними. В силу того, что диагонали прямоугольника $A_1B_1C_1D_1$ параллельны диагоналям трапеции ABCD, угол между ними равен углу между диагоналями трапеции. Обозначим этот угол через ψ . Кроме того диагонали прямоугольника, вписанного в окружность, являются его диаметрами, поэтому $A_1C_1 = B_1D_1 = 26$. Тогда $S_{ABCD} = \frac{1}{2}AC \cdot BD\sin\psi = 169\sin\psi$; $S_{A_1B_1C_1D_1} = \frac{1}{2}A_1C_1 \cdot B_1D_1\sin\psi = \frac{1}{2}\cdot 26\cdot 26\sin\psi = 338\sin\psi$. Значит, отношение площадей равно $\frac{169\sin\psi}{338\sin\psi} = \frac{1}{2}$.
- 2) Точка O лежит на отрезке MN. Тогда MN = ON + OM = 17. Аналогично первому случаю находим, что DH = 17, $BD = \sqrt{DH^2 + BH^2} = 17\sqrt{2}$, $S_{ABCD} = \frac{1}{2}AC \cdot BD \sin \varphi = 289 \sin \varphi$; $S_{A_1B_1C_1D_1} = \frac{1}{2}A_1C_1 \cdot B_1D_1 \sin \varphi = \frac{1}{2} \cdot 26 \cdot 26 \sin \varphi = 338 \sin \varphi$, где φ угол между диагоналями трапеции. Отсюда отношение площадей есть $\frac{289 \sin \varphi}{338 \sin \varphi} = \frac{289}{338}$.
- 6. При каких значениях параметра a среди решений неравенства $(x^2 ax + 2x 2a)\sqrt{5-x} \le 0$ найдутся два решения, разность между которыми равна 5?

Other: $a \in (-\infty; -7] \cup [0; +\infty)$.

Решение. ОДЗ неравенства определяется условием $x \le 5$. Раскладывая квадратный трёхчлен в скобках на множители (например, методом группировки), получаем $(x+2)(x-a)\sqrt{5-x} \le 0$. Будем решать это неравенство методом интервалов. Для того, чтобы расположить точки, в которых левая часть неравенства обращается в ноль, на числовой прямой, необходимо рассмотреть несколько случаев.

1) a>5. Тогда множитель (x-a) отрицателен на ОДЗ, и его можно отбросить, поменяв знак неравенства. Получаем $(x+2)\sqrt{5-x}\geqslant 0, x\in [-2;5]$. Очевидно, на этом промежутке есть точки, находящиеся на расстоянии 4 друг от друга (например, x=-4 и x=0). Все значения a<-5 удовлетворяют условию задачи.

- 2) a=5. Неравенство принимает вид $(x+2)(x-5)\sqrt{5-x} \leqslant 0$, что равносильно неравенству, полученному в предыдущем случае. Значит, a=5 подходит.
- 3) -2 < a < 5. Тогда получаем $x \in [-2; a] \cup \{5\}$. Если $a \ge 0$, то в этом множестве есть точки на расстоянии 4 друг от друга (x = 0 и x = 5); если a < 0, то таких точек нет. Значит, в этом случае подходят значения $a \in [0; 5)$.
- 4) a=-2. Неравенство принимает вид $(x+2)^2\sqrt{5-x}\leqslant 0$ и выполняется только при x=-2 и x=5. Этот случай не подходит.
- 5) a < -2. Тогда $x \in [a; -2] \cup \{5\}$, и решения на расстоянии, равном 5, есть при $a \leqslant -7$.

Объединяя результаты всех рассмотренных случаев, получаем $a \in (-\infty; -7] \cup [0; +\infty)$.

7. На координатной плоскости рассматривается фигура M, состоящая из всех точек, координаты (x;y) которых удовлетворяют системе неравенств

$$\begin{cases} y + x \geqslant |x - y|, \\ \frac{x^2 - 8x + y^2 + 6y}{x + 2y - 8} \leqslant 0. \end{cases}$$

Изобразите фигуру M и найдите ее площадь.

Ответ: 8.

Решение. Первое неравенство равносильно² системе $\begin{cases} x-y\leqslant x+y,\\ x-y\geqslant -x-y \end{cases} \Leftrightarrow \begin{cases} x\geqslant 0,\\ y\geqslant 0. \end{cases}.$

Рассмотрим второе неравенство. Его можно записать в виде $\frac{(x-4)^2+(y+3)^2-25}{x+2y-8}\leqslant 0$. Числитель дроби в левой части неравенства обращается в 0 на окружности радиуса 5 с центром в точке Q(4;-3) (назовём её ω). Знаменатель дроби равен нулю на прямой $y=4-\frac{x}{2}$ (назовём её ℓ). Точки пересечения окружности и прямой определяются из системы уравнений

$$\begin{cases} x = 8 - 2y, \\ x^2 - 8x + y^2 + 6y = 0 \end{cases} \Leftrightarrow \begin{cases} x = 8 - 2y, \\ (8 - 2y)^2 - 8(8 - 2y) + y^2 + 6y = 0 \end{cases} \Leftrightarrow \begin{cases} x = 8 - 2y, \\ y^2 - 2y = 0, \end{cases}$$

откуда получаем две точки A(4;2) и B(8;0). Обозначим также начало координат через O, а точку пересечения прямой ℓ с осью Oy через C (несложно определить, что координаты точки C – это (0;4)).

Неравенство выполняется:

- во всех точках окружности ω кроме точек A и B (тогда числитель дроби равен нулю);
- внутри окружности ω в точках, расположенных выше прямой ℓ (числитель отрицателен, а знаменатель положителен);
- вне окружности ω в точках, расположенных ниже прямой ℓ (числитель положителен, а знаменатель отрицателен).

Опишем множество точек M, которые удовлетворяют исходной системе неравенств. Оно состоит из сегмента окружности, ограниченного хордой AB и находящегося сверху от этой хорды, а также криволинейного треугольника AOC, границами которого являются дуга AO окружности ω и отрезки AC и CO (при этом точки прямой ℓ множеству не принадлежат, а остальные точки границы – принадлежат).

Заметим, что в силу симметрии сегмент окружности, расположенный выше хорды AB, равен сегменту окружности, расположенному выше хорды AO. Значит, площадь фигуры M равна площади треугольника ACO, т.е. $\frac{1}{2} \cdot 4 \cdot 4 = 8$.

$$|A| \le B \Leftrightarrow \begin{cases} A \le B, \\ A \geqslant -B. \end{cases}$$

Задача считается полностью решённой (и за неё начисляется максимальное количество баллов), только если в тексте решения приведены все необходимые преобразования и полностью объяснены все имеющиеся логические шаги; при этом полученные ответы приведены к упрощённому виду.

Наличие верного ответа не гарантирует положительного балла за задачу. Верный ответ без обоснования – баллы не добавляются.

За верное обоснованное решение за задачу ставится полное количество баллов (указано в скобках после номера задачи). Некоторые частичные продвижения оцениваются согласно инструкции. В остальных случаях оценка ставится по усмотрению проверяющего.

3 OC	гальных случаях оценка ставится по усмотрению проверяющего.
1.	(4 балла) Выведена формула для расстояния между точками пересечения прямой и параболы 1 балл;
	получена система уравнений относительно неизвестных коэффициентов 1 балл;
	найдены неизвестные коэффициенты
	при решении системы потеряно одно из значений углового коэффициента прямой снять 1 балл;
	вместо расстояния между точками рассматривается расстояние между проекциями точек на ось абсцисс
2.	(4 балла) Выполнена замена переменных (как в решении или аналогичная ей) 1 балл;
	система уравнений решена относительно новых переменных
	за рассмотрение каждого из двух вариантов значений (u,w) по 1 баллу.
3.	(3 балла) Доказано, что треугольник BCP равнобедренный
4.	(5 баллов) Найдено количество способов, когда на карточках степени разных простых чисел 2 балла;
	найдено количество способов, когда на карточках степени одного простого числа 3 балла;
	неарифметическая ошибка хотя бы в одном из случаев, учтены не все случаи или некоторые наборы учтены более одного раза не более 3 баллов за задачу;
	если в решении предполагается, что наборы упорядоченные (тогда количество способов в каждом из случаев становится в 2 раза больше указанного в решении)
	ответ не приведён к числовому
	если при разборе случая используется неверный комбинаторный подсчёт (например, вместо $\frac{n(n+1)}{2}$ берётся $n(n+1)$
5.	(5 баллов) Полностью рассмотрен только один из двух возможных случаев 3 балла;
	промежуточные оценки в случае отсутствия полного решения (ставятся только один раз, даже если вычисления проведены верно в обоих случаях):
	– найдена площадь трапеции
	– найден угол между диагоналями прямоугольника
6.	(5 баллов) Квадратный трёхчлен в скобках разложен на множители 1 балл;
	построено множество решений данного неравенства на плоскости "переменная-параметр" 1 балл;
	при решении неравенства не учитывается ОДЗ не более 1 балла за задачу (который может быть поставлен за разложение на множители квадратного трёхчлена в скобках).
	Ответ отличается от верного конечным числом точек